heavy rainfall
Recently Published Documents


TOTAL DOCUMENTS

2009
(FIVE YEARS 702)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 326 ◽  
pp. 107785
Author(s):  
Linfeng Li ◽  
Yanbin Hao ◽  
Zhenzhen Zheng ◽  
Weijin Wang ◽  
Joel A. Biederman ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 27-36
Author(s):  
RANJAN PHUKAN ◽  
D. SAHA

Rainfall in India has very high temporal and spatial variability. The rainfall variability affects the livelihood and food habits of people from different regions. In this study, the rainfall trends in two stations in the north-eastern state of Tripura, namely Agartala and Kailashahar have been studied for the period 1955-2017. The state experiences an annual mean of more than 2000 mm of rainfall, out of which, about 60% occurs during the monsoon season and about 30% in pre-monsoon. An attempt has been made to analyze the trends in seasonal and annual rainfall, rainy days and heavy rainfall in the two stations, during the same period.Non-parametric Mann-Kendall test has been used to find out the significance of these trends. Both increasing and decreasing trends are observed over the two stations. Increasing trends in rainfall, rainy days and heavy rainfall are found at Agartala during pre-monsoon season and decreasing trends in all other seasons and at annual scale. At Kailashahar, rainfall amount (rainy days & heavy rainfall) is found to be increasing during pre-monsoon and monsoon seasons (pre-monsoon season). At annual scale also, rainfall and rainy days show increasing trends at Kailashahar. The parameters are showing decreasing trends during all other seasons at the station. Rainy days over Agartala show a significantly decreasing trend in monsoon, whereas no other trend is found to be significant over both the stations.  


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Haoyu Liu ◽  
Lijuan Wang ◽  
Yufan Dai ◽  
Hong Chen

Based on the China Meteorological Administration (CMA) best-track data, the ERA5 reanalysis, and the Global Precipitation Measurement (GPM) precipitation data, this paper analyzes the reasons for the heavy rainfall event of Super Typhoon Rammasun in 2014, and the results are as follows: (1) Rammasun was blocked by the western Pacific subtropical high (WPSH), the continental high, and the mid-latitude westerly trough. Such a stable circulation pattern maintained the vortex circulation of Rammasun. (2) During the period of landfall, the southwest summer monsoon surge was reinforced due to the dramatic increase of the zonal wind and the cross-equatorial flow near 108° E. The results of the dynamic monsoon surge index (DMSI) and boundary water vapor budget (BWVB) show that the monsoon surge kept providing abundant water vapor for Rammasun, which led to the enhanced rainfall. (3) The East Asian monsoon manifested an obvious low-frequency oscillation with a main period of 20–40 days in the summer of 2014, which propagated northward significantly. When the low-frequency oscillation reached the extremely active phase, the monsoon surge hit the maximum and influenced the circulation of Rammasun. Meanwhile, the convergence and water vapor flux associated with the low-frequency oscillation significantly contributed to the heavy rainfall.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Ying Zhang ◽  
Beibei Zhang ◽  
Qing Xu ◽  
Deqiang Gao ◽  
Wenbin Xu ◽  
...  

The climate-induced changes in soil water patterns pose a serious threat to subtropical plantations. Mixed species stands have been advocated as an efficient way to enhance ecosystem stability. However, little is known about their possible impact on the soil water-holding capacity in the subtropics. In this study, we employed a stable hydrogen isotope to assess the contribution of rainfall to soil water (CRSW) in a pure Chinese fir (Cunninghamia lanceolata) plantation and in two mixtures of Chinese fir with Cinnamomum camphora or with Alnus cremastogyne after three different magnitudes of rainfall events in subtropical China. Furthermore, we used structure equation modeling (SEM) to quantify the relative importance of vegetation and soil properties on the CRSW. The results indicated that the CRSW did not differ among these three Chinese fir plantations after light rainfall, whereas the CRSW of moderate and heavy rainfall to soil water were 15.95% and 26.06% higher in Chinese fir plantation with Cinnamomum camphora, and 22.67% and 22.93% higher in Chinese fir plantation with Alnus cremastogyne than that in the pure Chinese fir plantation, respectively. SEM analysis showed that the vegetation biomass and soil properties significantly affected the CRSW following light rainfall, but the soil properties were the most important factors influencing the CRSW under moderate and heavy rainfall. Our findings demonstrate that the mixed conifer–broad-leaved plantation is a more effective strategy for improving the soil water-holding capacity than the pure conifer plantation in subtropical regions, which is conducive to coping with the frequent seasonal droughts and extreme precipitation events.


2022 ◽  
Vol 22 (1) ◽  
pp. 23-40
Author(s):  
Chung-Chieh Wang ◽  
Pi-Yu Chuang ◽  
Chih-Sheng Chang ◽  
Kazuhisa Tsuboki ◽  
Shin-Yi Huang ◽  
...  

Abstract. In this study, the performance of quantitative precipitation forecasts (QPFs) by the Cloud-Resolving Storm Simulator (CReSS) in Taiwan, at a horizontal grid spacing of 2.5 km and a domain size of 1500×1200 km2, in the range of 1–3 d during three Mei-yu seasons (May–June) of 2012–2014 is evaluated using categorical statistics, with an emphasis on heavy-rainfall events (≥100 mm per 24 h). The categorical statistics are chosen because the main hazards are landslides and floods in Taiwan, so predicting heavy rainfall at the correct location is important. The overall threat scores (TSs) of QPFs for all events on day 1 (0–24 h) are 0.18, 0.15, and 0.09 at thresholds of 100, 250, and 500 mm, respectively, and indicate considerable improvements at increased resolution compared to past results and 5 km models (TS < 0.1 at 100 mm and TS ≤ 0.02 at 250 mm). Moreover, the TSs are shown to be higher and the model more skillful in predicting larger events, in agreement with earlier findings for typhoons. After classification based on observed rainfall, the TSs of day − 1 QPFs for the largest 4 % of events by CReSS at 100, 250, and 500 mm (per 24 h) are 0.34, 0.24, and 0.16, respectively, and can reach 0.15 at 250 mm on day 2 (24–48 h) and 130 mm on day 3 (48–72 h). The larger events also exhibit higher probability of detection and lower false alarm ratio than smaller ones almost without exception across all thresholds. With the convection and terrain better resolved, the strength of the model is found to lie mainly in the topographic rainfall in Taiwan rather than migratory events that are more difficult to predict. Our results highlight the crucial importance of cloud-resolving capability and the size of fine mesh for heavy-rainfall QPFs in Taiwan.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 253-256
Author(s):  
C. K. RAJAN ◽  
BINDU G.

ABSTRACT. Rainfall data for a period of 50 years from 1931 onwards have been analysed for three west, coast stations in Kerala for the southwest monsoon period, The period is divided into two halves, the first half, i.e.June-July, providing comparatively more rainfall  and the second half, i.e. August-September, providing comparatively lesser rainfall. Rainy days, having rain amounts>6.25 cm/day, have only been utilized for this study. The lunar cycle, which is having 29.53 days, is divided into ten phases, each phase constituting of around three days. To consider the effect of solar activity, the period is divided into active and quiet sun by considering those years with sunspot number greater than the upper quartile and those with sunspot number less than the lower quartile respectively. The data were analysed using x2 test. It describes the magnitude of the discrepancy between theory and observation. Analysis has shown that there is some statistical significance between heavy rainfall and lunar cycle. The effect is more significant in active sun period which shows the effect of solar activity also.  


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 479-488
Author(s):  
SOUMENDU SENGUPTA ◽  
B.K. MANDAL ◽  
D. PRADHAN

Ajoy, Mayurakshi, Kansabati are three important river catchments of West Bengal and Jharkhand state, received very heavy rainfall during two consecutive days of flood season in the month of September 2009. The contribution of heavy rainfall & combined discharges from Damodar Valley Corporation (DVC) reservoirs during the period of heavy rainspells over these catchments enhanced flood situation in some districts of West Bengal. The synoptic features based on weather charts, cloud imageries of satellite and radar pictures have been taken to analyse. The realized areal average precipitation (AAP) as per rainfall recorded at 0300 UTC of next day have also been taken to verify the quantitative precipitation forecast (QPF) of 6&7 September 2009.


Sign in / Sign up

Export Citation Format

Share Document