scholarly journals Dealing with Uncertainty through Real Options for the Multi-objective Design of Water Distribution Networks

2014 ◽  
Vol 89 ◽  
pp. 856-863 ◽  
Author(s):  
J. Marques ◽  
M. Cunha ◽  
D. Savić ◽  
O. Giustolisi
2021 ◽  
Vol 218 ◽  
pp. 18-31
Author(s):  
Douglas F. Surco ◽  
Diogo H. Macowski ◽  
Flávia A.R. Cardoso ◽  
Thelma P.B. Vecchi ◽  
Mauro A.S.S. Ravagnani

Author(s):  
Swati Sirsant ◽  
M. Janga Reddy

Abstract Designing the Water Distribution Networks (WDNs) consists of finding out pipe sizes such that the demands are satisfied and the desired performance levels are achieved at minimum cost. However, WDNs are subject to many future changes such as an increase (or decrease) in demand due to population change and migration, changes in water availability due to seasonal and climatic change, etc. Thus, the capacity expansion of WDNs needs to be performed such that the cost of interventions made is minimum while satisfying the demand and performance requirements at various time periods. Therefore, the current study proposed a Dynamic Programming (DP) framework for capacity expansion of WDNs and solved using Multi-Objective Self Adaptive Differential Evolution (MOSADE). The methodology is tested on three benchmark WDNs, namely Two-loop (TL), GoYang, and Blacksburg (BLA) WDNs, and applied to a real case study of the Badlapur region Maharashtra, India. The results show that the proposed methodology leads to effective Pareto optimal fronts, making it an efficient method for solving WDN expansion problems. Subsequently, an Analytical Hierarchy Process (AHP) based multi-criteria decision-making (MCDM) analysis was performed on the obtained Pareto-optimal solutions to determine the most suitable solution based on three criteria: Life Cycle Cost (LCC) of expansions, hydraulic reliability, and mechanical reliability. The main advantage of the proposed methodology is its capability to consider hydraulic performance as well as structural integrity and demand satisfaction in the face of hydraulic and mechanical failures.


Sign in / Sign up

Export Citation Format

Share Document