scholarly journals Ball-impact Piezoelectric Converter for Multi-degree-of-freedom Energy Harvesting from Broadband Low-frequency Vibrations in Autonomous Sensors

2014 ◽  
Vol 87 ◽  
pp. 1529-1532 ◽  
Author(s):  
Davide Alghisi ◽  
Simone Dalola ◽  
Marco Ferrari ◽  
Vittorio Ferrari
Energy ◽  
2020 ◽  
Vol 196 ◽  
pp. 117107
Author(s):  
Qinxue Tan ◽  
Kangqi Fan ◽  
Kai Tao ◽  
Liya Zhao ◽  
Meiling Cai

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document