scholarly journals Study of Heat-source-Tower Heat Pump System Efficiency

2015 ◽  
Vol 121 ◽  
pp. 915-921 ◽  
Author(s):  
Jianlin Cheng ◽  
Nianpin Li ◽  
Kuan Wang
1966 ◽  
Vol 9 (6) ◽  
pp. 0846-0848
Author(s):  
Myron G. Cropsey

2018 ◽  
Vol 3 (2) ◽  
pp. 58-61
Author(s):  
Agnieszka Lisowska-Lis ◽  
Robert Leszczyński

The subject of the research was an air-water heat pump, model PCUW 2.5kW from HEWALEX, installed in a single-family house. The pump is only used for heating water. The research was carried out from 25-08-2017 to 18-09-2017 in the village of Zborowice, in Malopolska region, Poland. The data were recorded from the heat pump system: temperature of the lower heat source (external air), temperature of the upper heat source (water temperature in the tank), time of heat pump was calculated during the analysed cycle of work and electrical energy consumption. The Coefficient Of Performance (COP) of the analysed air-water heat pump was determined. The analysis of the results was carried out using the MATLAB and EXCEL statistical tools. The correlation between COP coefficient and external air temperature is strong: 0.67.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Maarten G. Sourbron ◽  
Nesrin Ozalp

With reducing energy demand and required installed mechanical system power of modern residences, alternate heat pump system configurations with a possible increased economic viability emerge. Against this background, this paper presents a numerically examined energy feasibility study of a solar driven heat pump system for a low energy residence in a moderate climate, where a covered flat plate solar collector served as the sole low temperature heat source. A parametric study on the ambient-to-solarfluid heat transfer coefficient was conducted to determine the required solar collector heat transfer characteristics in this system setup. Moreover, solar collector area and storage tank volume were varied to investigate their impact on the system performance. A new performance indicator “availability” was defined to assess the contribution of the solar collector as low temperature energy source of the heat pump. Results showed that the use of a solar collector as low temperature heat source was feasible if its heat transfer rate (UA-value) was 200 W/K or higher. Achieving this value with a realistic solar collector area (A-value) required an increase of the overall ambient-to-solarfluid heat transfer coefficient (U-value) with a factor 6–8 compared to the base case with heat exchange between covered solar collector and ambient.


2015 ◽  
Vol 121 ◽  
pp. 771-778 ◽  
Author(s):  
Gang Wang ◽  
Zhenhua Quan ◽  
Yaohua Zhao ◽  
Chenming Sun ◽  
Jiannan Tong

2011 ◽  
Vol 43 (6) ◽  
pp. 1280-1287 ◽  
Author(s):  
Vincent Partenay ◽  
Peter Riederer ◽  
Tristan Salque ◽  
Etienne Wurtz

Author(s):  
Satoru Okamoto

This paper introduces a heat pump system with a latent heat storage utilizing seawater installed in an aquarium. Heat from the seawater is collected and used as the heat source for the heat pump system. This maintains the indoor conditions at constant temperature and relative humidity. With regard to the heat pump system using low-temperature unutilized heat source, development is introduced on a heat source load responsive heat pump system, with combines a load variation responsive heat pump utilizing seawater with a latent heat (ice plus water slurry) storage system using nighttime electric power serving for electric power load leveling. The desired outcome would be to show that the costs of generating heat energy with the seawater-source heat pump are significantly less than those with the air-source heat pump and the oil-fired system. Additionally, the CO2 emissions for the seawater-source heat pump compare favourably as they maybe less than those for the other conventional assumed systems described.


Sign in / Sign up

Export Citation Format

Share Document