scholarly journals Finite Element Analysis of Laminated Composite Skewed Hypar Shell Roof Under Oblique Impact with Friction

2017 ◽  
Vol 173 ◽  
pp. 314-322 ◽  
Author(s):  
Sanjoy Das Neogi ◽  
Amit Karmakar ◽  
Dipankar Chakravorty
Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad ◽  
Puneet Mahajan

The safety predictions of composite armors require a probabilistic analysis to take into consideration scatters in the material properties and initial velocity. Damage initiation laws are used to account for matrix and fiber failure during high-velocity impact. A three-dimensional (3D) stochastic finite-element analysis of laminated composite plates under impact is performed to determine the probability of failure (Pf). The objective is to achieve the safest design of lightweight composite through the most efficient ply arrangement of S2 glass epoxy. Realistic damage initiation models are implemented. The Pf is obtained through the Gaussian process response surface method (GPRSM). The antisymmetric cross-ply arrangement is found to be the safest based on maximum stress and Yen and Hashin criteria simultaneously. Sensitivity analysis is performed to achieve the target reliability.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Emin Taşdelen ◽  
Mehmet Halidun Keleştemur ◽  
Ercan Şevkat

Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding) and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element) model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.


2007 ◽  
Vol 561-565 ◽  
pp. 757-760
Author(s):  
Yong Shou Liu ◽  
Jun Liu ◽  
An Qiang Wang ◽  
Zhu Feng Yue

In this paper, an amendment method for stress and strain of double-curved laminated composite is proposed and studied. According to finite element analysis results of the same model with two different mesh size (coarse mesh size 120mm× 300mm and refined mesh size 30mm× 30mm ), stress and strain have been amended with modified formula in user material subroutine (UMAT) subprogram so that the corrected results of model with coarse mesh is similar to the results of model with refined mesh. Using this method, with coarse mesh, a satisfied accuracy results still can be obtained without refining mesh. It’s efficient for design and analysis of complex structures.


Sign in / Sign up

Export Citation Format

Share Document