velocity impact
Recently Published Documents


TOTAL DOCUMENTS

3023
(FIVE YEARS 884)

H-INDEX

81
(FIVE YEARS 15)

2022 ◽  
Vol 216 ◽  
pp. 106967
Author(s):  
Zhenyu Wu ◽  
Lingmin Huang ◽  
Zhongxiang Pan ◽  
Baoming Zhang ◽  
Xudong Hu

2022 ◽  
Vol 171 ◽  
pp. 108720
Author(s):  
Hosein Hasan-nezhad ◽  
Mojtaba Yazdani ◽  
Mohsen Jeddi

2022 ◽  
pp. 002199832110652
Author(s):  
Rochele Pinto ◽  
Gediminas Monastyreckis ◽  
Hamza Mahmoud Aboelanin ◽  
Vladimir Spacek ◽  
Daiva Zeleniakiene

This article presents the possibility of strength improvement and energy absorption of carbon fibre reinforced polymer composites by matrix modification. In this study, the mechanical properties of bisphenol-A epoxy matrix and carbon fibre reinforced polymer composites were modified with four different wt.% of star-shaped polymer n-butyl methacrylate (P n-BMA) block glycidyl methacrylate (PGMA). The tensile strength of the epoxy with 1 wt.% star-shaped polymer showed 128% increase in comparison to unmodified epoxy samples. Two different wt.% were then used for the modification of carbon fibre-reinforced polymer composite samples. Tensile tests and low-velocity impact tests were conducted for characterising modified samples. Tensile test results performed showed a slight improvement in the tensile strength and modulus of the composite. Low-velocity impact tests showed that addition of 1 wt.% star-shaped polymer additives increase composite energy absorption by 53.85%, compared to pure epoxy composite specimens. Scanning electron microscopy (SEM) analysis of post-impact specimens displays fracture modes and bonding between the matrix and fibre in the composites. These results demonstrate the potential of a novel star-shaped polymer as an additive material for automotive composite parts, where energy absorption is significant.


Trauma ◽  
2022 ◽  
pp. 146040862110453
Author(s):  
Kudzayi H Kutywayo ◽  
Joyce Thekkudan ◽  
Nathan Tyson ◽  
Mohammed F Chowdhry

Introduction First rib fractures are commonly reported in high velocity trauma. The neuromuscular sequelae that can ensue, not the physical disruption of the rib, necessitate thorough evaluation for such injuries. Methods We describe a case of a patient who sustained bilateral rib fractures following low-energy trauma.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 128
Author(s):  
Masatoshi Nishi ◽  
Shigeru Tanaka ◽  
Akihisa Mori ◽  
Matej Vesenjak ◽  
Zoran Ren ◽  
...  

Cellular metals exhibit diverse properties, depending on their geometries and base materials. This study investigated the mechanism of high-pressure generation during the high-velocity impact of unidirectional cellular (UniPore) materials. Cubic UniPore copper samples were mounted on a projectile and subjected to impact loading using a powder gun to induce direct impact of samples. The specimens exhibited a unique phenomenon of high-pressure generation near the pores during compression. We elucidate the mechanism of the high-pressure phenomenon and discuss the pore geometries that contribute to the generation of high pressures.


Sign in / Sign up

Export Citation Format

Share Document