scholarly journals Automated Generation of Rational Sheet Metal Forming Technology Variants at Process Engineering Stage

2017 ◽  
Vol 206 ◽  
pp. 1348-1354
Author(s):  
L.R. Kashapova ◽  
D.L. Pankratov ◽  
V.G. Shibakov
1993 ◽  
Author(s):  
E. Chu ◽  
K. N. Shah ◽  
F. Pourboghrat ◽  
K. Chandorkar

2015 ◽  
Vol 28 (12) ◽  
pp. 1452-1470 ◽  
Author(s):  
Shi-Hong Zhang ◽  
Shuai-Feng Chen ◽  
Yan Ma ◽  
Hong-Wu Song ◽  
Ming Cheng

2011 ◽  
Vol 335-336 ◽  
pp. 523-526
Author(s):  
Liu Ru Zhou

The NC incremental sheet metal forming technology is a flexible forming technology without dedicated forming dies. The forming locus of the forming tool can be adjusted by correcting the numerical model of the product. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to stretch deformation, the deformed region of sheet metal thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. The principle of NC incremental sheet metal forming and the forming process of the fender are introduced. The effect of process parameters on forming is analysed. The improvement method of the forming quality is suggested. The groove is created in the starting point of tool moving when the starting point of tool moving locus at all layers is identical. The groove can be eliminated when the starting point of tool moving locus at all layers is different. The feed pitch p increase, the process time decrease, production rate and surface degree of roughness increase. In general, the feed pitch is 0.25mm.


Author(s):  
Christine Schoene ◽  
Ralph Stelzer ◽  
Ulf Schmidt ◽  
Dietmar Suesse

The paper elucidates how to connect forming process simulation with innovative measurement- and analysis equipment thereby taking into account the machine influences. Reverse Engineering use 3D-Scanning data of sheet metal forming dies. Following this paradigm, the models simulation relies on are refined, and spotting of forming dies is subjected to a scientific analysis. That means, that with Reverse Engineering, “extended process engineering” is verified at the real spotting procedure, the comparison of simulation- and measuring results is used to evaluate how close the investigated models are to reality, extending the optimisation algorithms used for springback compensation to die spotting, the modification of the die topology will be carried out automatically thanks to new software functions.


2010 ◽  
Vol 139-141 ◽  
pp. 1514-1517 ◽  
Author(s):  
Liu Ru Zhou

The incremental sheet metal forming technology is a flexible forming technology without dedicated forming dies. The locus of the forming tool can be adjusted by correcting the numerical model of the product. The effect of forming half-apex angle on forming process with all kind of sheet material, sheet thickness and ironing ratio is researched. The limit half-apex angle is different for all kind of sheet material and thickness. The limit half-apex angle is smaller for the larger thickness of sheet metal. It will succeed in square conical box incremental forming in a single tool-path if the forming is carried out with an angle which is larger than the forming limit half-apex angle θ. The ironing ratio ψt is decided by the forming half-apex angle θ. The ironing ratio ψt varies with θ. The ironing ratio ψt is smaller when is larger.


Sign in / Sign up

Export Citation Format

Share Document