Reverse Engineering for Spotting of Sheet Metal Forming Parts

Author(s):  
Christine Schoene ◽  
Ralph Stelzer ◽  
Ulf Schmidt ◽  
Dietmar Suesse

The paper elucidates how to connect forming process simulation with innovative measurement- and analysis equipment thereby taking into account the machine influences. Reverse Engineering use 3D-Scanning data of sheet metal forming dies. Following this paradigm, the models simulation relies on are refined, and spotting of forming dies is subjected to a scientific analysis. That means, that with Reverse Engineering, “extended process engineering” is verified at the real spotting procedure, the comparison of simulation- and measuring results is used to evaluate how close the investigated models are to reality, extending the optimisation algorithms used for springback compensation to die spotting, the modification of the die topology will be carried out automatically thanks to new software functions.

2011 ◽  
Vol 189-193 ◽  
pp. 2770-2774
Author(s):  
Gan Wei Cai ◽  
Xi Yong Xu ◽  
Zhan Guang Zheng ◽  
Zhuan Zhang ◽  
Du Chao Wu

The steel wheel centre discs are usually stamped by multi-stage sheet metal forming. The stage number and the content of every stage decide if the structure-pieces can be formed successfully and the final forming quality. In this paper, the forming characteristics of wheel centre disc were analyzed firstly and the reasonable two-stage stamping scheme of drawing and inverse-drawing are adopted. The numerical simulations of multi-stage stamping process are performed and connected together through deformation transmission. By means of FLD and changes of sheet metal chickness, the formability is analyzed and the forming process is optimized. The feasibility of multi-stage forming process simulation and the validity of the optimized scheme were verified by stamping in practice.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2018 ◽  
Vol 19 (6) ◽  
pp. 756-760
Author(s):  
Tomasz Trzepieciński ◽  
Irena Nowotyńska

The friction phenomenon existed in almost all plastic working processes, in particular sheet metal forming, is a complex function of the material's properties, parameters of the forming process, surface topography of the sheet and tools, and lubrication conditions. During the stamping of the drawpieces there are zones differentiated in terms of stress and strain state, displacement speed and friction conditions. This article describes the methods for determining the value of the coefficient of friction in selected areas of sheet metal and presents the drawbacks and limitations of these methods.


Author(s):  
Jasri Mohamad

To improve sheet metal forming process simulation using finite element method, there is a need to incorporate an appropriate constitutive equation capable of describing the Bauschinger effect and the so-called cyclic transient, derived from a near to actual sheet metal forming process testing tool. A cyclic loading tool has been developed to test and record the characteristics of sheet metal deformation by investigating the Bauschinger effect factors (BEF) and cyclic hardening behaviour. Experimental investigation conducted on low carbon steel and stainless steel demonstrates that the tool is able to record sheet metal behaviour under cyclic loading. The results are analysed for signs of the Bauschinger effect and cyclic hardening effect. It was found that the Bauschinger effect does occur during bending and unbending loadings in sheet metal forming process.


Sign in / Sign up

Export Citation Format

Share Document