Conducting polymers in biomedical engineering

2007 ◽  
Vol 32 (8-9) ◽  
pp. 876-921 ◽  
Author(s):  
Nathalie K. Guimard ◽  
Natalia Gomez ◽  
Christine E. Schmidt
Author(s):  
Rajeswari Ravichandran ◽  
Subramanian Sundarrajan ◽  
Jayarama Reddy Venugopal ◽  
Shayanti Mukherjee ◽  
Seeram Ramakrishna

Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


1985 ◽  
Vol 46 (9) ◽  
pp. 1595-1601 ◽  
Author(s):  
F. Devreux ◽  
G. Bidan ◽  
A.A. Syed ◽  
C. Tsintavis

1983 ◽  
Vol 44 (C3) ◽  
pp. C3-567-C3-572 ◽  
Author(s):  
F. Bénière ◽  
D. Boils ◽  
H. Cánepa ◽  
J. Franco ◽  
A. Le Corre ◽  
...  

1982 ◽  
Vol 136 (3) ◽  
pp. 535
Author(s):  
S.A. Brazovskii
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document