guidance cues
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 43)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sheng-Jian Ji ◽  
Peng Han ◽  
Yuanchu She ◽  
Zhuoxuan Yang ◽  
Mengru Zhuang ◽  
...  

The accurate construction of neural circuits requires the precise control of axon growth and guidance, which is regulated by multiple growth and guidance cues during early nervous system development. It is generally thought that the growth and guidance cues that control the major steps of axon guidance have been defined. Here, we describe cerebellin-1 (Cbln1) as a novel cue that controls diverse aspects of axon growth and guidance throughout the central nervous system (CNS). Cbln1 has previously been shown to function in late neural development to influence synapse organization. Here we find that Cbln1 has an essential role in early neural development. Cbln1 is expressed on the axons and growth cones of developing commissural neurons and functions in an autocrine manner to promote axon growth. Cbln1 is also expressed in intermediate target tissues and functions as an attractive guidance cue. We find that these functions of Cbln1 are mediated by neurexin-2 (Nrxn2), which functions as the Cbln1 receptor for axon growth and guidance. In addition to the developing spinal cord, we further show that Cbln1 functions in diverse parts of the CNS with major roles in cerebellar parallel fiber growth and retinal ganglion cell axon guidance. Despite the prevailing role of Cbln1 as a synaptic organizer, our study discovers a new and unexpected function for Cbln1 as a general axon growth and guidance cue throughout the nervous system.


2021 ◽  
Vol 22 (22) ◽  
pp. 12230
Author(s):  
Kayleigh J. Robichaux ◽  
Ian S. Wallace

In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.


2021 ◽  
Vol 37 ◽  
pp. 11-14
Author(s):  
Laurie Nemoz-Billet ◽  
Sandrine Bretaud ◽  
Florence Ruggiero

The motor neurons (MN) form the ultimate route to convey the commands from the central nervous system to muscles. During development, MN extend axons that follow stereotyped trajectories to their muscle targets, guided by various attractive and repulsive molecular cues. Extracellular matrix (ECM) is a major source of guidance cues, but its role in axonal development and regeneration remains poorly documented. Regenerating axons are able to return to their synaptic target following their original trajectory. The same guidance cues could be thus involved in motor nerve regeneration. Zebrafish has become a popular model system in understanding the development of the peripheral nervous system. Thanks to the generation of fluorescent transgenic lines and the optical transparency of embryos and larvae, it allows direct visualization of axonogenesis. Additionally, and contrary to humans, its remarkable capacity to regenerate makes it well suited for the study of nerve regeneration. A laser method to ablate nerves in living zebrafish larvae has been developed in our laboratory that, combined with the use of the fluorescent mnx1:gfp zebrafish transgenic line, allows the follow up of the dynamics of the nerve regeneration process. To study the role of ECM proteins present in the axonal path, mutant lines for different ECM proteins (already available in our laboratory or generated in mnx1:gfp fish using CRISPR-Cas9 method) will be used to analyze their role during the regeneration process. These mutant lines for ECM will be crossed with existing fluorescent transgenic lines to visualize different cell types involved in the nerve regeneration, such as macrophages (mfap4:mcherry), neutrophils (mpx:gfp) or even Schwann cells (sox10:mrfp). Overall, this study will depict the role of ECM in nerve regeneration and will provide essential knowledge for the development of new biomaterials to promote the regeneration of injured motor nerves.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anita Senk ◽  
Valentin Djonov

AbstractAlthough well investigated, the importance of collagen fibers in supporting angiogenesis is not well understood. In this study, we demonstrate that extracellular collagen fibers provide guidance cues for endothelial cell migration during regenerative angiogenesis in the caudal zebrafish fin. Inhibition of collagen cross-linking by β-Aminopropionitrile results in a 70% shorter regeneration area with 50% reduced vessel growth and disintegrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell migration and induces formation of abnormal angioma-like blood vessels. Treatment of the Fli//colRN zebrafish line with the prodrug Nifurpirinol, which selectively damages the active collagen-producing 1α2 cells, reduced the regeneration area and vascular growth by 50% with wider, but less inter-connected, capillary segments. The regenerated area contained larger vessels partially covered by endothelial cells embedded in atypical extracellular matrix containing cell debris and apoptotic bodies, macrophages and granulocytes. Similar experiments performed in early embryonic zebrafish suggested that collagens are important also during embryonic angiogenesis. In vitro assays revealed that collagen I allows for the most efficient endothelial cell migration, followed by collagen IV relative to the complete absence of exogenous matrix support. Our data demonstrates severe vascular defects and restricted fin regeneration when collagens are impaired. Collagen I therefore, provides support and guidance for endothelial cell migration while collagen IV is responsible for proper lumen formation and vascular integrity.


2021 ◽  
Vol 22 (15) ◽  
pp. 8344
Author(s):  
Miguel E. Domínguez-Romero ◽  
Paula G. Slater

During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.


2021 ◽  
Vol 22 (11) ◽  
pp. 6111
Author(s):  
Greta Limoni

The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.


2021 ◽  
Author(s):  
Abby L Bull ◽  
Leonard Campanello ◽  
Matt J Hourwitz ◽  
Qixin Yang ◽  
Min Zhao ◽  
...  

Cells are able to integrate multiple, and potentially competing, cues to determine a migration direction. For instance, in wound healing, cells follow chemical signals or electric fields to reach the wound edge, regardless of any local guidance cues. To investigate this integration of guidance cues, we monitor the actin-polymerization dynamics of immune cells in response to cues on a subcellular scale (nanotopography) and on the cellular scale (electric fields, EFs). In the fast, amoeboid-type migration, commonly observed in immune cells, actin polymerization at the cell's leading edge is the driver of motion. The excitable systems character of actin polymerization leads to self-propagating, two-dimensional wavefronts that enable persistent cell motion. We show that EFs guide these wavefronts, leading to turning of cells when the direction of the EF changes. When nanoridges promote one-dimensional (1D) waves of actin polymerization that move along the ridges (esotaxis), EF guidance along that direction is amplified. 1D actin waves cannot turn or change direction, so cells respond to a change in EF direction by generating new 1D actin waves. At the cellular scale, the emergent response is a turning of the cell. For nanoridges perpendicular to the direction of the EF, the 1D actin waves are guided by the nanotopography, but both the average location of new actin waves and the whole cell motion are guided by the EF. Thus, actin waves respond to each cue on its intrinsic length scale, allowing cells to exhibit versatile responses to the physical microenvironment.


2021 ◽  
Author(s):  
Roxana O. Florica

During the development of the nervous system, neurons are guided to their final targets by several well-known guidance cues. In Caenorhabditis elegans the expression of the UNC-6/Netrin guidance cue along the ventral cord attracts axons that express UNC-40, while repulsing axons that express both the UNC-5 and UNC-40 receptors. Lack of both UNC-40 and the novel protein ENU-3 enhanced the ventral guidance defects of the AVM and PVM (Yee et al., 2014). This suggests that ENU-3 functions in an UNC-6 dependent pathway parallel to UNC-40 in controlling migrations towards the ventral nerve cord. Mutations in all proteins of the ENU-3 family also enhance the motor neuron axon outgrowth defects of strains lacking UNC-6 or the UNC-5 receptor, thus they function in a parallel unknown pathway (Yee et al., 2011). Expression analyses in HeLa cells have determined that ENU-3 and one of its paralogs, C38D4.1 localize to the nuclear membrane/ER while another of its paralogs, K01G5.3 is an intracellular membrane-associated protein.


2021 ◽  
Author(s):  
Roxana O. Florica

During the development of the nervous system, neurons are guided to their final targets by several well-known guidance cues. In Caenorhabditis elegans the expression of the UNC-6/Netrin guidance cue along the ventral cord attracts axons that express UNC-40, while repulsing axons that express both the UNC-5 and UNC-40 receptors. Lack of both UNC-40 and the novel protein ENU-3 enhanced the ventral guidance defects of the AVM and PVM (Yee et al., 2014). This suggests that ENU-3 functions in an UNC-6 dependent pathway parallel to UNC-40 in controlling migrations towards the ventral nerve cord. Mutations in all proteins of the ENU-3 family also enhance the motor neuron axon outgrowth defects of strains lacking UNC-6 or the UNC-5 receptor, thus they function in a parallel unknown pathway (Yee et al., 2011). Expression analyses in HeLa cells have determined that ENU-3 and one of its paralogs, C38D4.1 localize to the nuclear membrane/ER while another of its paralogs, K01G5.3 is an intracellular membrane-associated protein.


2021 ◽  
Vol 22 (10) ◽  
pp. 5143
Author(s):  
Sampada P. Mutalik ◽  
Stephanie L. Gupton

How millions of axons navigate accurately toward synaptic targets during development is a long-standing question. Over decades, multiple studies have enriched our understanding of axonal pathfinding with discoveries of guidance molecules and morphogens, their receptors, and downstream signalling mechanisms. Interestingly, classification of attractive and repulsive cues can be fluid, as single guidance cues can act as both. Similarly, guidance cues can be secreted, chemotactic cues or anchored, adhesive cues. How a limited set of guidance cues generate the diversity of axonal guidance responses is not completely understood. Differential expression and surface localization of receptors, as well as crosstalk and spatiotemporal patterning of guidance cues, are extensively studied mechanisms that diversify axon guidance pathways. Posttranslational modification is a common, yet understudied mechanism of diversifying protein functions. Many proteins in axonal guidance pathways are glycoproteins and how glycosylation modulates their function to regulate axonal motility and guidance is an emerging field. In this review, we discuss major classes of glycosylation and their functions in axonal pathfinding. The glycosylation of guidance cues and guidance receptors and their functional implications in axonal outgrowth and pathfinding are discussed. New insights into current challenges and future perspectives of glycosylation pathways in neuronal development are discussed.


Sign in / Sign up

Export Citation Format

Share Document