Comparison of tensile bond strength of denture reline materials on denture bases fabricated with CAD-CAM technology

Author(s):  
Amireh N. Awad ◽  
Seok-Hwan Cho ◽  
Matthew J. Kesterke ◽  
Jenn-Hwan Chen
2013 ◽  
Vol 46 ◽  
pp. 122-127 ◽  
Author(s):  
Christine Keul ◽  
Anna Martin ◽  
Timea Wimmer ◽  
Malgorzata Roos ◽  
Wolfgang Gernet ◽  
...  

2014 ◽  
Vol 30 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Bogna Stawarczyk ◽  
Nicola Stich ◽  
Marlis Eichberger ◽  
Daniel Edelhoff ◽  
Malgorzata Roos ◽  
...  

Author(s):  
Meriç Berkman ◽  
Safa Tuncer ◽  
Neslihan Tekçe ◽  
Ferda Karabay ◽  
Mustafa Demirci

Purpose: The objective of this study is to evaluate and compare the microtensile bond strength (μTBS) of four different self-adhesive resin cements to a resin-based ceramic CAD/CAM block, at the baseline, and after subjecting them to 5,000 thermo-cycles.Materials and Methods: Four self-adhesive dual-cured resin cements; G-CEM LinkAce (GC EUROPE, Leuven, Belgium), RelyX U200 (3M ESPE, Seefeld, Germany), Maxcem Elite (Kerr, CA, USA), TheraCem (Bisco, Schaumburg, USA) were applied to Cerasmart CAD/CAM blocks (GC EUROPE, Leuven, Belgium). CAD/CAM blocks were sectioned into sticks and subjected to µTBS tests at 24 hours, and the other half were subjected to tests after 5000 thermo-cycles. The data were tested by one-way variance analysis (p<0.05). Results: The highest bond strength values were observed in TheraCem, followed by G-CEM LinkAce and RelyX U200, respectively (p<0.05). At the baseline, G-CEM LinkAce, RelyX U200, and Maxcem Elite showed statistically similar results. After 5,000 thermal-cycles, a significant decrease was observed in the bond strength values of G-CEM LinkAce (p<0.05). Conclusion: Between the adhesive cements used in the study, TheraCem showed the highest micro-tensile bond strength values both in the baseline (24h) results, and after the 5,000 thermal-cycle aging procedures.


2019 ◽  
Vol 44 (4) ◽  
pp. 386-395 ◽  
Author(s):  
A Liebermann ◽  
J Detzer ◽  
B Stawarczyk

SUMMARY Objectives: The aim of this investigation was to test the tensile bond strength (TBS) between different computer-aided-design/manufacturing (CAD/CAM) ceramics after conditioning using different universal adhesive systems and resin composite cement. Methods and Materials: Substrates of four CAD/CAM ceramics—1) VITABLOCS Mark II, 2) Initial LRF, 3) Celtra Duo, and 4) IPS e.max CAD (N=648, n=162)—were fabricated. VITABLOCS Mark II and Initial LRF were etched using 9% hydrofluoric acid for 60 seconds, Celtra Duo for 30 seconds, and IPS e.max CAD for 20 seconds. Substrates for conditioning using Monobond Etch & Prime were untreated. The following adhesive systems were used: All-Bond Universal (ABU), Clearfil Universal Bond (CUB), G-Multi Primer (GMP), iBond Universal (IBU), Monobond Etch & Prime (MEP), Monobond Plus (MBP), One Coat 7 Universal (OCU), Prime&Bond Active (PBA), and Scotchbond Universal (SBU). Conditioned substrates were bonded using a resin composite cement (Variolink Esthetic DC), thermal cycled (20,000×, 5°C/55°C), and TBS was measured using a universal testing machine. Data were analyzed using univariate analysis with partial eta-squared, Kolmogorov-Smirnov, Kruskal-Wallis, Mann-Whitney U, and Spearman-Rho tests (α=0.05). Results: ABU, MEP, and MBP obtained the significantly highest TBS, while CUB, IBU, and OCO resulted in the lowest, regardless of the CAD/CAM ceramic. SBU showed varying TBS results depending on the CAD/CAM ceramic used. ABU, MEP, and MBP showed no impact of CAD/CAM ceramic on TBS values. ABU, GMP, MEP, and MBP showed predominantly cohesive failure types in luting composite, while CUB and OCU demonstrated adhesive failure types.


2020 ◽  
Vol 23 (4) ◽  
pp. 335-342
Author(s):  
Ahmed Algazar ◽  
Mohamed Helal ◽  
Muhammad Masoud ◽  
Mostafa Fayad

2020 ◽  
Vol 69 (3) ◽  
Author(s):  
Felipe Sczepanski ◽  
Cláudia R. Brunnquell ◽  
Sandrine B. Berger ◽  
Eloisa A. Paloco ◽  
Murilo B. Lopes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document