thermal cycles
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 176)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Akshay Bharadwaj Krishna ◽  
Kaiyuan Jin ◽  
Portnovo Ayyaswamy ◽  
Ivan Catton ◽  
Timothy S. Fisher

Abstract Heat exchangers play a critical role in supercritical CO2 Brayton cycles by providing necessary waste heat recovery. Supercritical CO2 thermal cycles potentially achieve higher energy density and thermal efficiency operating at elevated temperatures and pressures. Accurate and computationally efficient estimation of heat exchanger performance metrics at these conditions is important for the design and optimization of sCO2 systems and thermal cycles. In this paper (Part II), a computationally efficient and accurate numerical model is developed to predict the performance of STHXs. Highly accurate correlations reported in Part I of this study are utilized to improve the accuracy of performance predictions, and the concept of volume averaging is used to abstract the geometry and reduce computation time. The numerical model is validated by comparison with CFD simulations and provides high accuracy and significantly lower computation time compared to existing numerical models. A preliminary optimization study is conducted and the advantage of using supercritical CO2 as a working fluid for energy systems is demonstrated.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
Sha Liu ◽  
Jiong Shen

The structure of an integrated energy system is complex. Thermoeconomics can play a significant role in the analysis of IES because it makes up for the deficiency of traditional thermodynamic analysis and provides new information on the cost and energy conversion efficiency. When using thermoeconomics to analyze the energy efficiency of an IES, one key issue that needs to be solved is how to transfer irreversible loss across thermal cycles, so that the mechanism of system performance degradation can be fully revealed. To this end, an irreversible cost and exergy cost integrated analysis method based on improved thermoeconomics is proposed, in which the cumulative and transmission impact of irreversible loss across thermal cycles is evaluated using linear transformation of <KP> matrix. A case study on a 389MW combined cooling, heating, and power IES demonstrates the effectiveness of the proposed approach. The proposed approach can reveal the key links impairing the overall energy efficiency and transfer of irreversible loss across thermal cycles. The approach can be extended to various types of IES to provide directions for the assessment and optimization of the system.


Author(s):  
Venkata Siva Teja Putti ◽  
S Manikandan ◽  
Kiran Kumar Ayyagari

Abstract Titanium (Ti-6Al-4V) is an α+β phase-field alloy utilized in many industries due to its high strength-to-weight ratio and near-net shaping capability. Solution treated & aging, and stress relief annealing processes were performed on the samples to increase the strength and % of elongation. The heat-treated samples then thermally cycled for 500 cycles, 1000 cycles, and 1500 cycles to evaluate the microhardness and tensile properties. The presence of martensite and α2 precipitates in the thermally cycled samples was confirmed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). In this investigation, at 1000 thermal cycles, all specimens show improvement in both hardness and strength when compared within the cycles. Solution-treated and aging (STA), stress relief annealing (SRA), and without any heat-treatment (WHT) processes have their highest hardness values recorded for 1000 thermal cycles, and the values are 471 HV0.5, 381 HV0.5, and 374.6HV0.5, respectively. For the SRA process, ultimate tensile strength (UTS) of 925 MPa and yield strength (YS) of 896 MPa have resulted in 1000 cycles. Similarly, at 1000 thermal cycle WHT processed samples yielded UTS of 920 MPa and YS of 885 MPa. STA process samples that are heat-treated for 1000 thermal cycles have better strength properties than SRA and WHT and had a UTS of 1530MPa and YS of 1420MPa. From a ductility point of view, a maximum elongation of 29% for the STA process has resulted. Compared to forged titanium alloy (base metal), an increase of 31% elongation and 41% ultimate tensile strength for solution treated and aging process at 1000 cycles has resulted in this investigation.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 162
Author(s):  
Gianluca Caposciutti ◽  
Bernardo Tellini ◽  
Alfredo Cigada ◽  
Stefano Manzoni

New low-cost measuring devices require that the box housing and electronics have the cost aligned with the sensing system. Nowadays, metallic clips and/or glue are commonly used to fix the electronics to the box, thus providing the same motion of the structure to the sensing element. However, these systems may undergo daily or seasonal thermal cycles, and the combined effect of thermal and mechanical stress can determine significant uncertainties in the measurand evaluation. To study these effects, we prepared some parallel plates capacitors by using glue as a dielectric material. We used different types of fixing and sample assembly to separate the effects of glue softening on the capacitor active area and plates distance. Therefore, we assessed the sample modification by measuring the capacitance variation during controlled temperature cycles. We explored possible non-linear behaviour of the capacitance vs. temperature, and possible effects of thermal cycles on the glue geometry. Further work is still needed to properly assess the nature of this phenomenon and to study the effect of mechanical stress on the sample’s capacitance.


2021 ◽  
pp. 109963622110631
Author(s):  
Muhammad Naeem Tahir ◽  
Ehab Hamed

Understanding the effects of high temperature and thermal cycles on the mechanical properties of expanded polystyrene (EPS) foam is critical for its use in sandwich panels. This paper presents an experimental investigation of these effects in typical environmental conditions that exist in construction applications. A total of 117 small specimens were cut from metal-faced sandwich panels with EPS core and were exposed to different numbers of thermal cycles and/or sustained high temperatures. The specimens were then loaded under compression, tension, and four-point bending for evaluating the degradation of the mechanical properties of the foam. The thermal cycles reflect typical surface temperature during daily summer conditions, with a period of 24 h each and with a temperature varying between 24°C to 80°C. The results show that the modulus of elasticity of EPS foam in compression reduced by about 38% after exposure to thermal cycles for 45 days, whereas the tensile and shear moduli reduced by about 5.7% and 13.8%, respectively. Exposure to sustained high temperature after thermal cycles led to larger degradation of the elastic and shear moduli in the range of 38%–50%. These degradations can lead to early failures in applications that rely on the EPS foam as a structural component like in insulating sandwich panels.


2021 ◽  
Author(s):  
Myoung Youp SONG

One of the candidates for metallic interconnects of solid oxide fuel cells is ferritic stainless steel, Crofer 22 APU. Ferritic stainless steel Crofer 22 APU specimens with different surface roughness were prepared by grinding with SiC powder papers of various grits and then thermally cycled in air. Variation in the microstructure of the samples having different roughness with thermal cycling was investigated. Polished Crofer 22 APU specimens after three and five thermal cycles had relatively flat oxide layers with thicknesses of about 13.8 and 17.9 μm, respectively. Micrographs of a trench made by milling with FIB (focused ion beam) for a Crofer 22 APU specimen ground with grit 80 SiC powder paper after 8 thermal cycles (total oxygen exposure time of 200 h at 1073 K), captured by ESB (energy selective back-scattering) and SE2 (type II secondary electrons), showed that the surface of the sample was very coarse and its oxide layer was undulated. In the oxide layer, the phase of the sublayer was Cr2O3, and that of the top layer was (Cr, Mn)3O4 spinel. The surface of the sample ground with grit 80 SiC powder paper was very rough after 60 thermal cycles (total oxygen exposure time of 1500 h at 1073 K). The polished Crofer 22 APU is a better applicant to an interconnect of SOFC than those with rougher surfaces.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7485
Author(s):  
Venkata Somi Reddy Janga ◽  
Mokhtar Awang ◽  
Mohd Fadillah Yamin ◽  
Uceu F. H. Suhuddin ◽  
Benjamin Klusemann ◽  
...  

The refill friction stir spot welding (refill FSSW) process is a solid-state joining process to produce welds without a keyhole in spot joint configuration. This study presents a thermo-mechanical model of refill FSSW, validated on experimental thermal cycles for thin aluminium sheets of AA7075-T6. The temperatures in the weld centre and outside the welding zone at selected points were recorded using K-type thermocouples for more accurate validation of the thermo-mechanical model. A thermo-mechanical three-dimensional refill FSSW model was built using DEFORM-3D. The temperature results from the refill FSSW numerical model are in good agreement with the experimental results. Three-dimensional material flow during plunging and refilling stages is analysed in detail and compared to experimental microstructure and hardness results. The simulation results obtained from the refill FSSW model correspond well with the experimental results. The developed 3D numerical model is able to predict the thermal cycles, material flow, strain, and strain rates which are key factors for the identification and characterization of zones as well for determining joint quality.


Author(s):  
Fei Qin ◽  
Shuai Zhao ◽  
Yanwei Dai ◽  
Lingyun Liu ◽  
Tong An ◽  
...  

Abstract Thermo-mechanical reliability assessment for sintered silver is a crucial issue as sintered silver is a promising candidate of die-attachment materials for power devices. In this paper, the nano-indentation tests are performed for sintered silver in typical die-attach interconnection under different thermal cycles. Based on thermal cycling test, the Young's modulus and hardness of sintered silver layer have been presented. It is found that the Young's modulus and hardness of sintered silver layer changes slightly although the microstructure of sintered silver also presents some variations. The stress and strain curves for different thermal cycling tests for sintered silver based on reverse analysis of nano-indentation are also given. The results show that the elastoplastic constitutive equations change significantly after thermal cycling tests, and the yielding stress decreases remarkably after 70 thermal cycles. The experimental investigation also show that the cracking behaviors of sintered silver depends on its geometry characteristics, which implies that the possible optimization of sintered silver layer could enhance its thermo-mechanical performance.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1768
Author(s):  
Bryan Y. Navarrete Pino ◽  
Antonio A. Torres Castillo ◽  
Emmanuel J. Gutiérrez Castañeda ◽  
Luis A. Espinosa Zúñiga ◽  
Lorena Hernández Hernández ◽  
...  

The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution of microstructure and phase transformations were discussed from the behavior of intercritical continuous cooling transformation diagrams calculated with the software JMatPro, and further characterization of the steel by scanning electron microscopy, optical microscopy and dilatometry. Mechanical properties were estimated with a mathematical model obtained as a function of the alloying elements concentrations by multiple linear regression, and then compared to the experimental mechanical properties determined by uniaxial tensile tests. It was found that AHSS of third generation can be obtained by thermal cycles simulating CAG lines through modifications in chemistry of a commercial AISI-1015 steel, having an ultimate tensile strength of UTS = 1020–1080 MPa and an elongation to fracture of Ef = 21.5–25.3%, and microstructures consisting of a mixture of ferrite phase, bainite microconstituent and retained austenite/martensite islands. The determination coefficient obtained by multiple linear regression for UTS and Ef was R2 = 0.94 and R2 = 0.84, respectively. In addition, the percentage error for UTS and Ef was 2.45–7.87% and 1.18–16.27%, respectively. Therefore, the proposed model can be used with a good approximation for the prediction of mechanical properties of low-alloyed AHSS.


Sign in / Sign up

Export Citation Format

Share Document