Effect of a dynamic navigation device on the accuracy of implant placement in the completely edentulous mandible: An in vitro study

Author(s):  
Yuzhang Feng ◽  
Yufei Yao ◽  
Xingmei Yang
Author(s):  
Gerardo Pellegrino ◽  
Pierantonio Bellini ◽  
Pier Francesco Cavallini ◽  
Agnese Ferri ◽  
Andrea Zacchino ◽  
...  

Aim: the aim of this in vitro study was to test whether the implant placement accuracy and the operating time can be influenced by the operator’s experience. Materials and methods: sixteen models underwent a (Cone Beam Computer Tomography) CBCT and implant positioning was digitally planned on this. The models were randomly assigned to four operators with different levels of surgical experience. One hundred and twelve implant sites were drilled using a dynamic navigation system and operating times were measured. Based on postoperative CBCTs, dental implants were virtually inserted and superimposed over the planned ones. Two-dimensional and 3D deviations between planned and virtually inserted implants were measured at the entry point and at the apical point. Angular and vertical errors were also calculated. Results: considering coronal and apical 3D deviations, no statistically significant differences were found between the four operators (p = 0.27; p = 0.06). Some vectorial components of the deviation at the apical point and the angular errors of some operators differed from each other. Conclusions: within the limitations of this study, dynamic navigation can be considered a reliable technique both for experienced and novice clinicians.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3543
Author(s):  
Marco Tallarico ◽  
Aurea Lumbau ◽  
Roberto Scrascia ◽  
Gianluca Demelas ◽  
Franco Sanseverino ◽  
...  

Background: Intraoral scanners (IOSs) in implantology represent a viable approach for single teeth or partial arches. However, when used for complete edentulous arches or long-span edentulous areas, it has been demonstrated that there is a need for improvement of IOS-related techniques. Therefore, the aim of this in vitro study was to assess the trueness and precision of a complete arch digital impression on four and six implants taken with or without a customized, prosthetic-based impression template. Materials and Methods: Two experimental models were prepared, representative of a complete edentulous mandible restored with four and six implants with built-in scan abutments. Models were scanned with (test group, TG) or without (control group, CG) the prosthetic-based impression template. Eight scans were taken for each model. The time needed to take impressions, error, trueness, and precision were evaluated. A statistical analysis was performed. Results: In the case of four implants, the time needed for the impression was 128.7 ± 55.3 s in the TG and 81.0 ± 23.5 s in the CG (p = 0.0416). With six scan abutments, the time was 197.5 ± 26.8 and 110.6 ± 25.2 s in the TG and CG, respectively (p = 0.0000). In the TG, no errors were experienced, while in the CG, 13 impressions were retaken due to incorrect stitching processes. In the four-implant impression, the mean angle deviation was 0.252 ± 0.068° (95% CI 0.021–0.115°) in the CG and 0.134 ± 0.053° (95% CI 0.016–0.090°) in the TG. The difference was statistically significant (p = 0.002). In the six-implant impression, the mean angle deviation was 0.373 ± 0.117° (95% CI 0.036–0.198°) in the CG and 0.100 ± 0.029° (95% CI 0.009–0.049°) in the TG (p = 0.000). In the TG, there were no statistically significant differences in the mean angle deviation within the group (p > 0.05), but there were in the CG. A colorimetric analysis showed higher deviations from the original model for the six-implant impression without a prosthetic template. Conclusions: Although all of the impressions exhibited deviation from the original model in the range of clinical acceptability, the prosthetic-based impression template significantly improved the trueness and precision of complete edentulous arches rehabilitated with four or six implants, making the complete arch digital impression more predictable.


Author(s):  
Janina Golob Deeb ◽  
Anja Frantar ◽  
George R. Deeb ◽  
Caroline K. Carrico ◽  
Ksenija Rener-Sitar

The aim of this randomized in vitro study was to compare the time and accuracy of implant site preparation and implant placement using a trephine drill versus a conventional drilling technique under dynamic navigation. A total of 42 implants were placed in simulation jaw models with the two drilling techniques by two operators with previous experience with dynamic navigation. The timing of each implant placement was recorded, and horizontal, vertical, and angulation discrepancies between the planned and placed implants were compared. There was no significant difference in time or accuracy between the trephine and conventional drilling techniques. Implant site preparation with a single trephine drill using dynamic navigation was as accurate under in vitro experimental conditions as a conventional drilling sequence.


Sign in / Sign up

Export Citation Format

Share Document