Evolution of ion-acoustic solitary waves in magnetized plasma contaminated with varying dust charged grains

2007 ◽  
Vol 55 (10) ◽  
pp. 1358-1367 ◽  
Author(s):  
Karabi Devi ◽  
J. Sarma ◽  
G.C. Das ◽  
A. Nag ◽  
Rajkumar Roychoudhury
2009 ◽  
Vol 75 (5) ◽  
pp. 593-607 ◽  
Author(s):  
SK. ANARUL ISLAM ◽  
A. BANDYOPADHYAY ◽  
K. P. DAS

AbstractA theoretical study of the first-order stability analysis of an ion–acoustic solitary wave, propagating obliquely to an external uniform static magnetic field, has been made in a plasma consisting of warm adiabatic ions and a superposition of two distinct populations of electrons, one due to Cairns et al. and the other being the well-known Maxwell–Boltzmann distributed electrons. The weakly nonlinear and the weakly dispersive ion–acoustic wave in this plasma system can be described by the Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation and different modified KdV-ZK equations depending on the values of different parameters of the system. The nonlinear term of the KdV-ZK equation and the different modified KdV-ZK equations is of the form [φ(1)]ν(∂φ(1)/∂ζ), where ν = 1, 2, 3, 4; φ(1) is the first-order perturbed quantity of the electrostatic potential φ. For ν = 1, we have the usual KdV-ZK equation. Three-dimensional stability analysis of the solitary wave solutions of the KdV-ZK and different modified KdV-ZK equations has been investigated by the small-k perturbation expansion method of Rowlands and Infeld. For ν = 1, 2, 3, the instability conditions and the growth rate of instabilities have been obtained correct to order k, where k is the wave number of a long-wavelength plane-wave perturbation. It is found that ion–acoustic solitary waves are stable at least at the lowest order of the wave number for ν = 4.


2004 ◽  
Vol 11 (2) ◽  
pp. 219-228 ◽  
Author(s):  
S. S. Ghosh ◽  
G. S. Lakhina

Abstract. The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.


2013 ◽  
Vol 88 (1) ◽  
pp. 015501 ◽  
Author(s):  
S Akter ◽  
M M Haider ◽  
S S Duha ◽  
M Salahuddin ◽  
A A Mamun

2010 ◽  
Vol 28 (6) ◽  
pp. 1299-1306 ◽  
Author(s):  
J. Ekeberg ◽  
G. Wannberg ◽  
L. Eliasson ◽  
K. Stasiewicz

Abstract. Spectra measured by incoherent scatter radars are formed predominantly by scattering of the incident signal off ion-acoustic and Langmuir waves in the ionosphere. Occasionally, the upshifted and/or downshifted lines produced by the ion-acoustic waves are enhanced well above thermal levels and referred to as naturally enhanced ion-acoustic lines. In this paper, we study another kind of enhancement, which is spectrally uniform over the whole ion-line, i.e. the up- and downshifted shoulder and the spectral valley in between. Based on observations made with the EISCAT Svalbard radar (ESR) facility, we investigate the transient and spectrally uniform power enhancements, which can be explained by ion-acoustic solitary waves. We use a theory of nonlinear waves in a magnetized plasma to determine the properties of such waves and evaluate their effects on scattered signals measured by ESR. We suggest a new mechanism that can explain backscattered power enhancements by one order of magnitude above the thermal level and show that it is consistent with observations.


1980 ◽  
Vol 23 (10) ◽  
pp. 2146 ◽  
Author(s):  
M. Y. Yu ◽  
P. K. Shukla ◽  
S. Bujarbarua

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Min Guo ◽  
Chen Fu ◽  
Yong Zhang ◽  
Jianxin Liu ◽  
Hongwei Yang

The study of ion-acoustic solitary waves in a magnetized plasma has long been considered to be an important research subject and plays an increasingly important role in scientific research. Previous studies have focused on the integer-order models of ion-acoustic solitary waves. With the development of theory and advancement of scientific research, fractional calculus has begun to be considered as a method for the study of physical systems. The study of fractional calculus has opened a new window for understanding the features of ion-acoustic solitary waves and can be a potentially valuable approach for investigations of magnetized plasma. In this paper, based on the basic system of equations for ion-acoustic solitary waves and using multi-scale analysis and the perturbation method, we have obtained a new model called the three-dimensional(3D) Schamel-KdV equation. Then, the integer-order 3D Schamel-KdV equation is transformed into the time-space fractional Schamel-KdV (TSF-Schamel-KdV) equation by using the semi-inverse method and the fractional variational principle. To study the properties of ion-acoustic solitary waves, we discuss the conservation laws of the new time-space fractional equation by applying Lie symmetry analysis and the Riemann-Liouville fractional derivative. Furthermore, the multi-soliton solutions of the 3D TSF-Schamel-KdV equation are derived using the Hirota bilinear method. Finally, with the help of the multi-soliton solutions, we explore the characteristics of motion of ion-acoustic solitary waves.


Sign in / Sign up

Export Citation Format

Share Document