scholarly journals Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

2004 ◽  
Vol 11 (2) ◽  
pp. 219-228 ◽  
Author(s):  
S. S. Ghosh ◽  
G. S. Lakhina

Abstract. The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

1981 ◽  
Vol 59 (6) ◽  
pp. 719-721 ◽  
Author(s):  
Bhimsen K. Shivamoggi

The propagation of weakly nonlinear ion–acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion–acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave.


2010 ◽  
Vol 28 (6) ◽  
pp. 1299-1306 ◽  
Author(s):  
J. Ekeberg ◽  
G. Wannberg ◽  
L. Eliasson ◽  
K. Stasiewicz

Abstract. Spectra measured by incoherent scatter radars are formed predominantly by scattering of the incident signal off ion-acoustic and Langmuir waves in the ionosphere. Occasionally, the upshifted and/or downshifted lines produced by the ion-acoustic waves are enhanced well above thermal levels and referred to as naturally enhanced ion-acoustic lines. In this paper, we study another kind of enhancement, which is spectrally uniform over the whole ion-line, i.e. the up- and downshifted shoulder and the spectral valley in between. Based on observations made with the EISCAT Svalbard radar (ESR) facility, we investigate the transient and spectrally uniform power enhancements, which can be explained by ion-acoustic solitary waves. We use a theory of nonlinear waves in a magnetized plasma to determine the properties of such waves and evaluate their effects on scattered signals measured by ESR. We suggest a new mechanism that can explain backscattered power enhancements by one order of magnitude above the thermal level and show that it is consistent with observations.


1980 ◽  
Vol 23 (10) ◽  
pp. 2146 ◽  
Author(s):  
M. Y. Yu ◽  
P. K. Shukla ◽  
S. Bujarbarua

2009 ◽  
Vol 75 (5) ◽  
pp. 593-607 ◽  
Author(s):  
SK. ANARUL ISLAM ◽  
A. BANDYOPADHYAY ◽  
K. P. DAS

AbstractA theoretical study of the first-order stability analysis of an ion–acoustic solitary wave, propagating obliquely to an external uniform static magnetic field, has been made in a plasma consisting of warm adiabatic ions and a superposition of two distinct populations of electrons, one due to Cairns et al. and the other being the well-known Maxwell–Boltzmann distributed electrons. The weakly nonlinear and the weakly dispersive ion–acoustic wave in this plasma system can be described by the Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation and different modified KdV-ZK equations depending on the values of different parameters of the system. The nonlinear term of the KdV-ZK equation and the different modified KdV-ZK equations is of the form [φ(1)]ν(∂φ(1)/∂ζ), where ν = 1, 2, 3, 4; φ(1) is the first-order perturbed quantity of the electrostatic potential φ. For ν = 1, we have the usual KdV-ZK equation. Three-dimensional stability analysis of the solitary wave solutions of the KdV-ZK and different modified KdV-ZK equations has been investigated by the small-k perturbation expansion method of Rowlands and Infeld. For ν = 1, 2, 3, the instability conditions and the growth rate of instabilities have been obtained correct to order k, where k is the wave number of a long-wavelength plane-wave perturbation. It is found that ion–acoustic solitary waves are stable at least at the lowest order of the wave number for ν = 4.


2011 ◽  
Vol 89 (3) ◽  
pp. 299-309 ◽  
Author(s):  
E. Saberian ◽  
A. Esfandyari-Kalejahi ◽  
M. Akbari-Moghanjoughi

The propagation of large amplitude ion-acoustic solitary waves (IASWs) in a fully relativistic plasma consisting of cold ions and ultra-relativistic hot electrons and positrons is investigated using the Sagdeev pseudopotential method in a relativistic hydrodynamics model. The effects of streaming speed of the plasma fluid, thermal energy, positron density, and positron temperature on large amplitude IASWs are studied by analysis of the pseudopotential structure. It is found that in regions in which the streaming speed of the plasma fluid is larger than that of the solitary wave, by increasing the streaming speed of the plasma fluid, the depth and width of the potential well increase, resulting in narrower solitons with larger amplitude. This behavior is opposite to the case where the streaming speed of the plasma fluid is less than that of the solitary wave. On the other hand, an increase in the thermal energy results in wider solitons with smaller amplitude, because the depth and width of the potential well decrease in that case. Additionally, the maximum soliton amplitude increases and the width becomes narrower as a result of an increase in positron density. It is shown that varying the positron temperature does not have a considerable effect on the width and amplitude of IASWs. The existence of stationary soliton-like arbitary amplitude waves is also predicted in fully relativistic electron-positron-ion (EPI) plasmas. The effects of streaming speed of the plasma fluid, thermal energy, positron density, and positron temperature on these kinds of solitons are the same for large amplitude IASWs.


Sign in / Sign up

Export Citation Format

Share Document