incoherent scatter radars
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1518
Author(s):  
Haoyi Chen ◽  
Kai Yuan ◽  
Ming Yao ◽  
Jiawei Xiong

Many modern ionospheric studies rely on incoherent scatter radars (ISR) since this kind of radar is able to detect various ionospheric parameters over very long ranges. The performance of ISR significantly depends on its coding system. In recent decades, a new type of coding system, which is the so-called composite coding, was presented. It used to be constructed by using a certain code to modulate alternating code to achieve better detection resolution and anti-noise performance for ISRs. In the present study, a new composite coding system was presented, which is constructed based on complementary codes and alternating codes. In this paper, the performance of the new composite code will be compared with that of several traditional codes to show that the new composite code can help to improve the detection performance of the ISR. According to the analysis based on the ambiguity function, the present composite coding system helps to improve the range resolution and detection range for ISR detections. In addition, numerical tests on anti-noise performance show that the complementary composite coding system has a good anti-noise performance and helps to reduce the necessary times of incoherent integration. As a result, the composite coding system can improve the time resolution.


2021 ◽  
Vol 13 (20) ◽  
pp. 4077
Author(s):  
Alessio Pignalberi ◽  
Fabio Giannattasio ◽  
Vladimir Truhlik ◽  
Igino Coco ◽  
Michael Pezzopane ◽  
...  

The global statistical median behavior of the electron temperature (Te) in the topside ionosphere was investigated through in-situ data collected by Langmuir Probes on-board the European Space Agency Swarm satellites constellation from the beginning of 2014 to the end of 2020. This is the first time that such an analysis, based on such a large time window, has been carried out globally, encompassing more than half a solar cycle, from the activity peak of 2014 to the minimum of 2020. The results show that Swarm data can help in understanding the main features of Te in the topside ionosphere in a way never achieved before. Te data measured by Swarm satellites were also compared to data modeled by the empirical climatological International Reference Ionosphere (IRI) model and data measured by Jicamarca (12.0°S, 76.8°W), Arecibo (18.2°N, 66.4°W), and Millstone Hill (42.6°N, 71.5°W) Incoherent Scatter Radars (ISRs). Moreover, the correction of Swarm Te data recently proposed by Lomidze was applied and evaluated. These analyses were performed for two main reasons: (1) to understand how the IRI model deviates from the measurements; and (2) to test the reliability of the Swarm dataset as a new possible dataset to be included in the underlying empirical dataset layer of the IRI model. The results show that the application of the Lomidze correction improved the agreement with ISR data above all at mid latitudes and during daytime, and it was effective in reducing the mismatch between Swarm and IRI Te values. This suggests that future developments of the IRI Te model should include the Swarm dataset with the Lomidze correction. However, the existence of a quasi-linear relation between measured and modeled Te values was well verified only below about 2200 K, while for higher values it was completely lost. This is an important result that IRI Te model developers should properly consider when using the Swarm dataset.


2021 ◽  
Author(s):  
Enkelejda Qamili ◽  
Filomena Catapano ◽  
Lars Tøffner-Clausen ◽  
Stephan Buchert ◽  
Christian Siemes ◽  
...  

<p>The European Space Agency (ESA) Swarm mission, launched on November 2013, continue to provide very accurate measurements of the strength, direction and variation of the Earth’s magnetic field. These data together with precise navigation, accelerometer, electric field, plasma density and temperature measurements, are crucial for a better understanding of the Earth’s interior and its environment. This paper will provide a status update of the Swarm Instrument performance after seven years of operations. Moreover, we will provide full details on the new Swarm Level 1b product baseline of Magnet and Plasma data which will be generated and distributed soon to the whole Swarm Community.  Please note that the main evolutions to be introduced in the Swarm L1B Algorithm are: i) computation of the Sun induced magnetic disturbance (dB_Sun) on the Absolute Scalar Magnetometer (ASM) and Vector Field Magnetometer (VFM) data; ii) computation of systematic offset between Langmuir Probes (LP) measurements ad ground observations derived from Incoherent Scatter Radars (IRS) located at middle, low, and equatorial latitudes. These and further improvements are planned to be included in the upcoming versions of the Swarm Level 1b products, aiming at achieving the best data quality for scientific applications.</p>


2020 ◽  
Author(s):  
Elizabeth Donegan-Lawley ◽  
Alan Wood ◽  
Gareth Dorrian ◽  
Alexandra Fogg ◽  
Timothy Yeoman ◽  
...  

<p>Flow channel events have previously been observed breaking up polar cap patches on the dayside ionosphere but, to the best of our knowledge, have not been observed on the nightside. We report observations of a flow channel event in the evening of the 9th January 2019 under quiet geomagnetic conditions. This multi-instrument study was undertaken using a combination of multiple EISCAT (European Incoherent Scatter) radars, SuperDARN (Super Dual Auroral Radar Network), MSP (Meridian Scanning Photometer) and GNSS (Global Navigation Satellite System) scintillation data. These data were used to build a picture of the evening’s observations from 1800 to 2359 UT. The flow channel event lasted a total of 13 minutes and was responsible for segmenting a polar cap patch. A decrease in electron density was observed, from a patch value of 1.4x10<sup>11</sup> m<sup>3</sup> to a minimum value of 5x10<sup>10</sup> m<sup>3</sup>. In addition, ion velocities in excess of 1000 ms<sup>-1</sup> and ion temperatures of greater than 2000 K were also observed. </p>


Sign in / Sign up

Export Citation Format

Share Document