Study of dispersive Alfven wave in auroral acceleration region in an inhomogeneous plasma

2012 ◽  
Vol 71 (1) ◽  
pp. 101-105 ◽  
Author(s):  
P. Agarwal ◽  
P. Varma ◽  
M.S. Tiwari
2019 ◽  
Vol 5 (6) ◽  
pp. eaav8411 ◽  
Author(s):  
Andreas Keiling ◽  
Scott Thaller ◽  
John Wygant ◽  
John Dombeck

Geomagnetic storms are large space weather events with potentially tremendous societal implications. During these storms, the transfer of energy from the solar wind into geospace is largely increased, leading to enhanced energy flow and deposition within the magnetosphere and ionosphere. While various energy forms participate, the rate of total Alfvén wave energy flowing into the auroral acceleration region—where the magnetosphere and ionosphere couple—has not been quantified. Here, we report a fourfold increase in hemispherical Alfvénic power (from 2.59 to 10.05 GW) over a largely expanded oval band covering all longitudes and latitudes between 50° and 85° during the main storm phase compared with nonstorm periods. The Poynting flux associated with individual Alfvén waves reached values of up to about 0.5 W/m2 (mapped to ionospheric altitude). These results demonstrate that Alfvén waves are an important component of geomagnetic storms and associated energy flow into the auroral acceleration region.


2009 ◽  
Vol 36 (5) ◽  
Author(s):  
K. Asamura ◽  
C. C. Chaston ◽  
Y. Itoh ◽  
M. Fujimoto ◽  
T. Sakanoi ◽  
...  

2004 ◽  
Vol 56 (7) ◽  
pp. 649-661 ◽  
Author(s):  
E. N. Fedorov ◽  
V. A. Pilipenko ◽  
M. J. Engebretson ◽  
T. J. Rosenberg

Author(s):  
C. C. Chaston

Folding, kinking, curling and vortical optical forms are distinctive features of most bright auroral displays. These forms are symptomatic of non-linear forcing of the plasma above auroral arcs resulting from the intensification of electrical currents and Alfvén waves along high-latitude geomagnetic field-lines during periods of disturbed space weather. Electrons accelerated to energies sufficient to carry these currents impact the atmosphere and drive visible emission with spatial structure and dynamics that replicate the morphology and time evolution of the plasma region where the acceleration occurs. Movies of active auroral displays, particularly when combined with conjugate in-situ fields and plasma measurements, therefore capture the physics of a driven, non-linearly evolving space plasma system. Here a perspective emphasizing the utility of combining in-situ measurements through the auroral acceleration region with high time and spatial resolution auroral imaging for the study of space plasma turbulence is presented. It is demonstrated how this special capacity reveals the operation of a cascade of vortical flows and currents through the auroral acceleration region regulated by the physics of Alfvén waves similar to that thought to operate in the Solar wind.


1999 ◽  
Vol 17 (9) ◽  
pp. 1145-1154 ◽  
Author(s):  
O. Verkhoglyadova ◽  
A. Agapitov ◽  
A. Andrushchenko ◽  
V. Ivchenko ◽  
S. Romanov ◽  
...  

Abstract. Compressional waves with periods greater than 2 min (about 10-30 min) at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail) · Space plasma physics (kinetic and MHD theory; non-linear phenomena)


Sign in / Sign up

Export Citation Format

Share Document