field line
Recently Published Documents


TOTAL DOCUMENTS

891
(FIVE YEARS 100)

H-INDEX

51
(FIVE YEARS 4)

Author(s):  
T. Elsden ◽  
T.K. Yeoman ◽  
S. J. Wharton ◽  
I. J. Rae ◽  
J. K. Sandhu ◽  
...  

2021 ◽  
Vol 28 (12) ◽  
pp. 120501
Author(s):  
A. Shalchi

2021 ◽  
Author(s):  
Osuke Saka

Abstract. Known as northern lights, auroral spirals are distinct features of substorm auroras composed of large-scale spirals (100s km Surges) mixed with smaller scale ones (10s km Folds, and 1 km Rays). Spiral patterns are generally interpreted in terms of the field line mapping of the upward field-aligned currents produced in the magnetosphere during the field line dipolarization. The field line mapping results in opposing spiral rotations of small- and large-scale auroras. Because of a rotational symmetry deformation and similarity in deformation speeds (6~8 km/s) of small- and large-scale spirals, it has been suggested that common physical processes may underlie the deforming processes. Internal processes in the polar ionosphere (ionospheric driver) will be proposed as the general dynamic for spiral auroras. The ionospheric driver rotated in the ionosphere to produce spirals that characteristically differ from the field line mapping scenario.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012199
Author(s):  
G S Patrin ◽  
M M Mataev ◽  
K Zh Seitbekova ◽  
Ya G Shiyan ◽  
V G Plekhanov

Abstract The magnetostatic and magnetic resonance properties of the Y0.5Sr0.5Cr0.5Mn0.5O3 polycrystalline system have been experimentally studied. The intracrystalline ferromagnetic interaction turned out to be prevalent while the intercrystalline interaction appears to have antiferromagnetic character. We found that two absorption lines are observed in the spectrum in the magnetic ordering region at T < 80 K. The high-field line corresponds to the interacting parts of polycrystal related to the disordered shells and the low-field peak is system of ferromagnetic particles.


2021 ◽  
Vol 16 (0) ◽  
pp. 1403097-1403097
Author(s):  
Seikichi MATSUOKA
Keyword(s):  

Author(s):  
Lunjin Chen ◽  
Xiao-Jia Zhang ◽  
Anton Artemyev ◽  
Liheng Zheng ◽  
Zhiyang Xia ◽  
...  

Microbursts, short-lived but intense electron precipitation observed by low-Earth-orbiting satellites, may contribute significantly to the losses of energetic electrons in the outer radiation belt. Their origin is likely due to whistler mode chorus waves, as evidenced by a strong overlap in spatial correlation of the two. Despite previous efforts on modeling bursty electron precipitation induced by chorus waves, most, if not all, rely on the assumption that chorus waves are ducted along the field line with zero wave normal angle. Such ducting is limited to cases when fine-scale plasma density irregularities are present. In contrast, chorus waves propagate in a nonducted way in plasmas with smoothly varying density, allowing wave normals to gradually refract away from the magnetic field line. In this study, the interaction of ducted and nonducted chorus waves with energetic electrons is investigated using test particle simulation. Substantial differences in electron transport are found between the two different scenarios, and resultant electron precipitation patterns are compared. Such a comparison is valuable for interpreting low Earth-orbiting satellite observations of electron flux variation in response to the interaction with magnetospheric chorus waves.


2021 ◽  
Author(s):  
Jianli Jia ◽  
Mingzhe Wang ◽  
Tianci Xu ◽  
Haotian Pangyan ◽  
Xueying Zhou

Abstract A physical model, mathematical model and geometric model of multi-physical field (electric field, flow field, temperature field, magnetic field) were established to explore the influence of magnetic field on the temperature domain in the gap during ECM. The change law of temperature domain of ECM gap under different magnetic field design methods was studied by using COMSOL MULTIPHYSICS. The scheme is as follows: the magnetic field line is perpendicular to the electric field and the flow field is parallel; the magnetic field line is parallel to the electric field and the flow field is vertical; the electric field of the magnetic field is vertical and the flow field is vertical. The change law of the influence of the magnetic field on the electrolyte temperature is studied by simulation. The changes of current density under three magnetic field design methods and different electrolyte flow were studied. The simulation results show that when the magnetic field is perpendicular to the electric field and the flow field, the temperature change is relatively gentle, and the flow field changes uniformly under the action of the magnetic field volume force, so that the change of current density is relatively stable; The current density of anodic dissolution increases with the increase of voltage, resulting in the increase of electrolyte temperature and heat, further reducing the gap and machining gap, and the temperature in the gap will be greatly increased. Under the action of magnetic field, the electrolyte flow rate increases and the electrolyte temperature decreases greatly.


2021 ◽  
Vol 28 (8) ◽  
pp. 082904
Author(s):  
A. R. Yeates ◽  
A. J. B. Russell ◽  
G. Hornig

Sign in / Sign up

Export Citation Format

Share Document