scholarly journals Distribution of energetic electrons in the near earth space: New observations from the BeiDa Imaging Electron Spectrometer and the Van Allen Probes

2020 ◽  
Vol 186 ◽  
pp. 104919
Author(s):  
Xingran Chen ◽  
Qiugang Zong ◽  
Hong Zou ◽  
Yongfu Wang ◽  
Xuzhi Zhou ◽  
...  
2015 ◽  
Vol 43 (9) ◽  
pp. 3070-3074 ◽  
Author(s):  
Tamitha Mulligan Skov ◽  
Joseph F. Fennell ◽  
James L. Roeder ◽  
J. Bernard Blake ◽  
Seth G. Claudepierre

2021 ◽  
Author(s):  
Vassilis Angelopoulos ◽  
Ethan Tsai ◽  
Colin Wilkins ◽  
Xiaojia Zhang ◽  
Anton Artemyev ◽  
...  

Abstract In near-Earth space, the magnetosphere, energetic electrons (tens to thousands of kiloelectron volts) orbit around Earth, forming the radiation belts. When scattered by magnetospheric processes, these electrons precipitate to the upper atmosphere, where they deplete ozone, a radiatively active gas, modifying global atmospheric circulation. Relativistic electrons (those above a few hundred kiloelectron volts), can reach the lowest altitudes and have the strongest effects on the upper atmosphere; their loss from the magnetosphere is also important for space weather. Previous models have only considered magnetospheric scattering and precipitation of energetic electrons; atmospheric scattering of such electrons has not been adequately considered, principally due to lack of observations. Here we report the first observations of this process. We find that atmospherically-scattered energetic (relativistic) electrons form a low-intensity, persistent “drizzle”, whose integrated energy flux is comparable to (greater than) that of the more intense but ephemeral precipitation by magnetospheric scattering. Thus, atmospheric scattering of energetic electrons is important for global atmospheric circulation, radiation belt flux evolution, and the repopulation of the magnetosphere with lower-energy, secondary electrons.


2004 ◽  
Vol 10 (2-3) ◽  
pp. 16-21
Author(s):  
O.F. Tyrnov ◽  
◽  
Yu.P. Fedorenko ◽  
L.F. Chernogor ◽  
◽  
...  

2006 ◽  
Vol 2 (S236) ◽  
pp. 43-54 ◽  
Author(s):  
Olga A. Mazeeva

AbstractThe dynamical evolution of 2⋅105 hypothetical Oort cloud comets by the action of planetary, galactic and stellar perturbations during 2⋅109 years is studied numerically. The evolution of comet orbits from the outer (104 AU <a<5⋅104 AU, a is semimajor axes) and the inner Oort cloud (5⋅103 AU <a<104 AU) to near-Earth space is investigated separately. The distribution of the perihelion (q) passage frequency in the planetary region is obtained calculating the numbers of comets in every interval of Δ q per year. The flux of long-period (LP) comets (orbital periods P>200 yr) with perihelion distances q<1.5 AU brighter than visual absolute magnitude H10=7 is ∼ 1.5 comets per year, and ∼18 comets with H10<10.9. The ratio of all LP comets with q<1.5 AU to ‘new’ comets is ∼5. The frequency of passages of LP comets from the inner Oort cloud through region q<1.5 AU is ∼3.5⋅10−13 yr−1, that is roughly one order of magnitude less than frequency of passages of LP comets from the outer cloud (∼5.28⋅10−12 yr−1). We show that the flux of ‘new’ comets with 15<q<31 AU is higher than with q<15 AU, by a factor ∼1.7 for comets from the outer Oort cloud and, by a factor ∼7 for comets from the inner cloud. The perihelia of comets from the outer cloud previously passed through the planetary region are predominated in the Saturn-Uranus region. The majority of inner cloud comets come in the outer solar system (q>15 AU), and a small fraction (∼0.01) of them can reach orbits with q<1.5 AU. The frequency of transfer of comets from the inner cloud (a<104 AU) to the outer Oort cloud (a>104 AU), from where they are injected to the region q<1.5 AU, is ∼6⋅10−14 yr−1.


1993 ◽  
Vol 13 (8) ◽  
pp. 133-136 ◽  
Author(s):  
A.J. Tuzzolino ◽  
J.A. Simpson ◽  
R.B. McKibben ◽  
H.D. Voss ◽  
H. Gursky

2021 ◽  
Vol 85 (4) ◽  
pp. 386-388
Author(s):  
V. V. Malakhov ◽  
A. G. Mayorov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document