high eccentricity
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 44)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 923 (2) ◽  
pp. 139
Author(s):  
Fupeng Zhang ◽  
Xian Chen ◽  
Lijing Shao ◽  
Kohei Inayoshi

Abstract We study the stellar binary black holes (BBHs) inspiraling/merging in galactic nuclei based on our numerical method GNC. We find that 3%–40% of all newborn BBHs will finally merge due to various dynamical effects. In a five-year mission, up to 104, 105, and ∼100 of BBHs inspiraling/merging in galactic nuclei can be detected with signal-to-noise ration >8 in Advanced LIGO (aLIGO), Einstein/DECIGO, and TianQin/LISA/TaiJi, respectively. Roughly tens are detectable in both LISA/TaiJi/TianQin and aLIGO. These BBHs have two unique characteristics. (1) Significant eccentricities: 1%–3%, 2%–7%, or 30%–90% of them have e i > 0.1 when they enter into aLIGO, Einstein, or space observatories, respectively. Such high eccentricities provide a possible explanation for that of GW190521. Most highly eccentric BBHs are not detectable in LISA/Tianqin/TaiJi before entering into aLIGO/Einstein, as their strain becomes significant only at f GW ≳ 0.1 Hz. DECIGO becomes an ideal observatory to detect those events, as it can fully cover the rising phase. (2) Up to 2% of BBHs can inspiral/merge at distances ≲103 r SW from the massive black hole, with significant accelerations, such that the Doppler phase drift of ∼10–105 of them can be detected with signal-to-noise ratio >8 in space observatories. The energy density of the gravitational-wave backgrounds (GWBs) contributed by these BBHs deviates from the power-law slope of 2/3 at f GW ≲ 1 mHz. The high eccentricity, significant accelerations, and the different profile of the GWB of these sources make them distinguishable, and thus interesting for future gravitational-wave detections and tests of relativities.


2021 ◽  
Vol 162 (6) ◽  
pp. 265
Author(s):  
Mason G. MacDougall ◽  
Erik A. Petigura ◽  
Isabel Angelo ◽  
Jack Lubin ◽  
Natalie M. Batalha ◽  
...  

Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sini = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >105 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc−1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.


2021 ◽  
Vol 162 (6) ◽  
pp. 263
Author(s):  
Benjamin J. Hord ◽  
Knicole D. Colón ◽  
Veselin Kostov ◽  
Brianna Galgano ◽  
George R. Ricker ◽  
...  

Abstract We present the results of a uniform search for additional planets around all stars with confirmed hot Jupiters observed by the Transiting Exoplanet Survey Satellite (TESS) in its Cycle 1 survey of the southern ecliptic hemisphere. Our search comprises 184 total planetary systems with confirmed hot Jupiters with R p > 8 R ⊕ and orbital period <10 days. The Transit Least Squares algorithm was utilized to search for periodic signals that may have been missed by other planet search pipelines. While we recovered 169 of these confirmed hot Jupiters, our search yielded no new statistically validated planetary candidates in the parameter space searched (P < 14 days). A lack of planet candidates nearby hot Jupiters in the TESS data supports results from previous transit searches of each individual system, now down to the photometric precision of TESS. This is consistent with expectations from a high-eccentricity migration formation scenario, but additional formation indicators are needed for definitive confirmation. We injected transit signals into the light curves of the hot Jupiter sample to probe the pipeline’s sensitivity to the target parameter space, finding a dependence proportional to R p 2.32 P − 0.88 for planets within 0.3 ≤ R p ≤ 4 R ⊕ and 1 ≤ P ≤ 14 days. A statistical analysis accounting for this sensitivity provides a median and 90% confidence interval of 7.3 − 7.3 + 15.2 % for the rate of hot Jupiters with nearby companions in this target parameter space. This study demonstrates how TESS uniquely enables comprehensive searches for nearby planetary companions to nearly all the known hot Jupiters.


2021 ◽  
Vol 2 (6) ◽  
pp. 231
Author(s):  
Matija Ćuk ◽  
Seth A. Jacobson ◽  
Kevin J. Walsh

Abstract Most close-in planetary satellites are in synchronous rotation, which is usually the stable end-point of tidal despinning. Saturn’s moon Hyperion is a notable exception by having a chaotic rotation. Hyperion’s dynamical state is a consequence of its high eccentricity and its highly prolate shape. As many binary asteroids also have elongated secondaries, chaotic rotation is expected for moons in eccentric binaries, and a minority of asteroidal secondaries may be in that state. The question of secondary rotation is also important for the action of the binary Yarkovsky–O’Keefe–Radzievskii–Paddack (BYORP) effect, which can quickly evolve orbits of synchronous (but not nonsynchronous) secondaries. Here we report results of a large set of short numerical simulations which indicate that, apart from synchronous and classic chaotic rotation, close-in irregularly shaped asteroidal secondaries can occupy an additional, intermediate rotational state. In this “barrel instability” the secondary slowly rolls along its long axis, while the longest axis is staying largely aligned with the primary–secondary line. This behavior may be more difficult to detect through lightcurves than a fully chaotic rotation, but would likewise shut down BYORP. We show that the binary’s eccentricity, separation measured in secondary’s radii and the secondary’s shape are all important for determining whether the system settles in synchronous rotation, chaotic tumbling, or barrel instability. We compare our results for synthetic asteroids with known binary pairs to determine which of these behaviors may be present in the near-Earth asteroid binary population.


2021 ◽  
Vol 922 (1) ◽  
pp. L1
Author(s):  
Alexis Heitzmann ◽  
George Zhou ◽  
Samuel N. Quinn ◽  
Stephen C. Marsden ◽  
Duncan Wright ◽  
...  

Abstract HIP 67522 b is a 17 Myr old, close-in (P orb = 6.96 days), Jupiter-sized (R = 10 R ⊕) transiting planet orbiting a Sun-like star in the Sco–Cen OB association. We present our measurement of the system’s projected orbital obliquity via two spectroscopic transit observations using the CHIRON spectroscopic facility. We present a global model that accounts for large surface brightness features typical of such young stars during spectroscopic transit observations. With a value of ∣ λ ∣ = 5.8 − 5.7 + 2.8 ° it is unlikely that this well-aligned system is the result of a high-eccentricity-driven migration history. By being the youngest planet with a known obliquity, HIP 67522 b holds a special place in contributing to our understanding of giant planet formation and evolution. Our analysis shows the feasibility of such measurements for young and very active stars.


2021 ◽  
Vol 920 (1) ◽  
pp. L16
Author(s):  
Jiayin Dong ◽  
Chelsea X. Huang ◽  
George Zhou ◽  
Rebekah I. Dawson ◽  
Joseph E. Rodriguez ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 320
Author(s):  
Yuki Moritani ◽  
Akiko Kawachi

Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259−63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some of which are caused by interactions with the compact object (e.g., tidal forces). Due to the high eccentricity and large orbit of these systems, the interactions—and, hence the resultant observables—depend on the orbital phase. To explore such variations, multi-band photometry and linear polarization were monitored for the three considered systems, using two 1.5 m-class telescopes: IRSF at the South African Astronomical Observatory and Kanata at the Higashi–Hiroshima Observatory.


Sign in / Sign up

Export Citation Format

Share Document