Abrupt climate change in the Black Sea basin during the last glacial period (10-60 kyr)

2012 ◽  
Vol 279-280 ◽  
pp. 26
Author(s):  
Helge Arz
Nature ◽  
1996 ◽  
Vol 384 (6608) ◽  
pp. 447-449 ◽  
Author(s):  
Jonathan Overpeck ◽  
David Rind ◽  
Andrew Lacis ◽  
Richard Healy

2013 ◽  
Vol 80 (3) ◽  
pp. 502-509 ◽  
Author(s):  
Frauke Rostek ◽  
Edouard Bard

The Black Sea is connected to a large drainage area including the European Russian Plain, part of the Alps and southeastern Europe. To study the hydrological changes in this basin over the last 40,000 years, we measured specific terrigenous biomarkers for wetland vegetation in well-dated sediments from the northwestern Black Sea, spanning the last glacial period (lacustrine phase) and the Holocene (marine phase). Low abundances of these biomarkers are observed during the North Atlantic ice melting and cooling events known as Heinrich Events 4 to 2, the Last Glacial Maximum and the Younger Dryas Event. Increased biomarker inputs characterize the mild climate phases known as Dansgaard–Oeschger Interstadials, the Bølling/Allerød and Preboreal Warmings indicating increased erosion due to permafrost degradation, higher primary productivity and/or wetland extension in the drainage basin. The final retreat of the Fennoscandian Ice Sheet from the Russian Plain occurs during the early part of Heinrich Event 1 and is characterized by increased biomarker concentrations in a typical series of four deglacial clay layers. For the last glacial period, the correspondence in timing between the biomarker records and the atmospheric CH4 record from ice cores, suggests an important CH4 contribution due to boreal permafrost thawing and wetland emission.


2020 ◽  
Author(s):  
Anders Svensson ◽  
Dorthe Dahl-Jensen ◽  
Jørgen Peder Steffensen ◽  
Thomas Blunier ◽  
Sune O. Rasmussen ◽  
...  

Abstract. The last glacial period is characterized by a number of abrupt climate events that have been identified in both Greenland and Antarctic ice cores. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two Hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice-core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 80 large bipolar volcanic eruptions throughout the second half of the last glacial period (12–60 ka before present). This improved ice-core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. During abrupt transitions, we find more coherent Antarctic water isotopic signals (δ18O and deuterium excess) than was obtained from previous gas-based synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122 ± 24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which is less sensitive to synchronization errors, suggests an Antarctic δ18O lag of 152 ± 37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.


Sign in / Sign up

Export Citation Format

Share Document