glacial period
Recently Published Documents


TOTAL DOCUMENTS

770
(FIVE YEARS 125)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
pp. 103745
Author(s):  
Abhijith U. Venugopal ◽  
Nancy A.N. Bertler ◽  
Rebecca L. Pyne ◽  
Helle A. Kjær ◽  
V. Holly L. Winton ◽  
...  
Keyword(s):  
Ice Core ◽  

2022 ◽  
Vol 578 ◽  
pp. 117299
Author(s):  
Ryu Uemura ◽  
Kosuke Masaka ◽  
Yoshinori Iizuka ◽  
Motohiro Hirabayashi ◽  
Hitoshi Matsui ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 297-306
Author(s):  
GUFRAN BEIG

Ice core air analysis has indicated a significant variation in the atmospheric contents of the greenhouse gases CO2, CH4 and N2O from the last ice age to the present period. This may have contributed in altering the vertical distribution of temperature and composition of the atmosphere about which not much information is available. The two dimensional interactive model of radiation, dynamics and chemistry has been used to reconstruct the annual vertical distribution of thermal structure and trace gas concentrations of the middle atmosphere for the periods extending from last ice age to the present. For this purpose, ice core air data of the above mentioned forcing parameters are used as input to the model for different time frames including Mounder Maximum, Roman maximum, pre-industrial period and the last glacial period. Model results show that the considerable reduction in the greenhouse gas content for the last ice age has resulted in colling of troposphere and a warming by about 10 to 15° K in the upper stratosphere as compared to present. The variation in temperature is closely related with the water vapour content. The percentage change in ozone concentration for the last glacial period is to a miximum of 50% near the poles in the upper stratosphere and about 10% in the tropics. A significant decrease in the hydroxyl content in the last ice age must have contributed in increasing the ozone content above 30 km. however, the total integrated ozone content appears to show marginal variations from last ice age to the present due to several counter-balancing effects.


2021 ◽  
Vol 47 (3) ◽  
pp. 77-78
Author(s):  
Khoiril Anwar Maryunani

Recent global warming has been addressed due to human activity that causes increased greenhouse gases. However, there are inherent uncertainties in the statement, one of them is the level of natural variability inherent in the climate system. Climate data from measuring instruments are not long enough to evaluate climate variability and current climate evolution. Therefore, we need climate data that has a long back span. To get adequate past climate data, we need natural phenomena which are climate dependent. This natural phenomenon provides a proxy record of the climate. This study of proxy data is the foundation of palaeoclimatology and paleoceanography. Microfossils (i.e., foraminifera, palynomorphs, nannofossils) which in geology are used as a standard tool in biostratigraphy for both age determination and paleoenvironment and correlation, can also be used as a proxy for obtaining paleoclimate and paleoceanography data. Using microfossil as a proxy to study past climate and paleoceanography, we need an understanding of the type of proxy data available and methods used in their analysis.In addition to the dating method (biostratigraphy), there are many climate and oceanography parameters that can be obtained from microfossil proxies such as: sea surface temperature (SST), sea surface salinity, (SST) climate (warm, cold, dry, wet), precipitation, productivity, oxygen content and organic carbon level, deep sea current and ventilation/upwelling, thermocline and mixed layer, variability deep water properties, CCD, bathymetry, sea level change and dissolution. The methods to obtain data fall into some categories e.g., faunal/floral displacement, morphology changes, transfer function/modern analog and isotopic content. Another method that can be used is observing microfossil assemblages and link them to ecological changes associated with climate change and its paleoceanography.A paleoclimate and paleoceanography study using microfossil proxies has been conducted in the Cendrawasih bay, Papua, Indonesia. The study shows that climate in the tropical west Pacific margin (Cendrawasih bay) during Late Pleistocene to Holocene shows high variability. There are nineteen climate changes occurred during Holocene. Early Holocene dated as ca. 11,800-year BP marked by rapid warming with SST differences to last glacial is about 4oC. Early to Middle Holocene (ca. 5960-year BP) marked by increasing temperature up to 2oC, interrupted by cooling at ca. 11230-, 8310- and 7120-years BP. At Middle Holocene temperature decreased rapidly and reached its peak at around ca. 3150-year BP. After cooling at ca. 3150-year BP, temperature increased and then decreased with its peak at ca. 1710-year BP. Since ca. 1710-year BP to Recent, temperature shows warming trend. SST from MAT indicates warming environment near to 1.5oC. The warming trend was interrupted by rapid cooling and warming at ca. 300-year BP. This last warming trend indicates that global warming had started before industrial era and rapid cooling, or warming can occur without anthropogenic gases influence. The typical Holocene climate of warm-wet, dry-cold reverse and become warm-dry, cold-wet during ca. 790-370-year BP and then reversed back to preceding state.Semi-restricted basin occurred since last glacial with anaerobic condition and estuarine circulation system. Warming during interstadial 1e-1a, causing reverse water circulation and basin become sub-aerobic with anti-estuarine circulation. A lot of terrestrial organic matter flow to the bay and increase acidity and carbonate dissolution. High sedimentation found occurred during glacial period especially at the end of glacial period. Rapid warming during late glacial to middle Holocene, rising relative sea level and the bay become more open marine with well oxygenated bottom water and high marine productivity. Warm temperature and deeper thermocline depth (~ 250 m) in west Pacific occurred up to ca. 5960-year BP. Decreasing Sea surface temperature at ca. 5960-year BP and drop of relative sea level causing sub-aerobic condition inside bay. The semi-restricted state with sub-aerobic condition occurred up to Recent.Distribution of Sphaeroidinella group in the tropical west Pacific shows strong correlation with thermocline depth and reflect El Niño frequency event. Early middle Holocene dominated by La Niña-like condition and since Middle Holocene (ca. 5960-year BP) frequent El Niño event began to occur. 


The Auk ◽  
2021 ◽  
Author(s):  
Charles Christian Riis Hansen ◽  
Sina Baleka ◽  
Sólveig Magnea Guðjónsdóttir ◽  
Jacob Agerbo Rasmussen ◽  
Jesus Adrian Chimal Ballesteros ◽  
...  

Abstract Using whole mitochondrial DNA sequences from 89 White-tailed Eagles (Haliaeetus albicilla) sampled from Iceland, Greenland, Norway, Denmark and Estonia between 1990 and 2018, we investigate the mitogenomic variation within and between countries. We show that there is a substantial population differentiation between the countries, reflecting similar major phylogeographic patterns obtained previously for the control region of the mitochondria, which suggested two main refugia during the last glacial period. Distinct mitogenomic lineages are observed within countries with divergence times exceeding the end of the last glacial period of the Ice Age. Deviations from neutrality indicate that these lineages have been maintained by natural selection and there is an excess of segregating amino acids in comparison with number of fixations suggesting a large load of deleterious mutations. The maintenance of the distinct mitogenic lineages within countries inflates our estimates of divergence times.


2021 ◽  
pp. 1-15
Author(s):  
Ulf Linnemann ◽  
Mandy Hofmann ◽  
Andreas Gärtner ◽  
Jessica Gärtner ◽  
Johannes Zieger ◽  
...  

Abstract In the Cadomian orogenic belt a package of glacigenic sedimentary deposits have been recently described in the Armorican Massif (Normandy, France). The Granville Tillite Member, the middle part of the upper Granville Formation, is late Ediacaran in age. Maximum depositional ages of the pre- and syn-glacial sedimentary deposits obtained by LA-ICP-MS U–Pb detrital zircon dating indicate a maximum age of 561 ± 3 Ma. Combined with geochronological data on the previously described glacial deposits in Cadomia, West Africa, Arabia and Iran, the Granville Tillite Member appears to represent an Upper Ediacaran Glacial Period in northern peri-Gondwana, clearly younger than the c. 580 Ma old Gaskiers glaciation. Detailed mapping and analysis of the depositional regime of two sections near the city of Granville are indicative of two independent glaciomarine lower and upper tillite deposits separated by a distinct conglomeratic marker horizon, evidently a massive gravel beach horizon deposited during an interglacial stage. Age spectra of detrital zircon U–Pb ages constrain the palaeogeographical position of the upper Granville Formation to the periphery of the West African Craton. Post-Gaskiers aged glaciations in Cadomia and in West Africa should be grouped into an Upper Ediacaran Glacial Period dated at c. 565 Ma. This glacial period seems not to be related to the negative δ13C Shuram–Wonoka anomaly. Sedimentary deposits formed during the Upper Ediacaran Glacial Period show a scattered distribution along the marginal orogens of the Gondwana supercontinent independent of palaeolatitude and are coupled most likely to contemporaneous orogenic processes and uplift.


2021 ◽  
pp. 1-20
Author(s):  
José Luis Peña-Monné ◽  
Lourdes Montes Ramírez ◽  
María Marta Sampietro-Vattuone ◽  
Rafael Domingo Martínez ◽  
Alicia Medialdea ◽  
...  

Abstract The Roca San Miguel (RSM) archaeological site was occupied during Mousterian times. Here we present a geoarchaeological and paleoenvironmental reconstruction of the site. Five stratigraphic units (A to E) formed by different archaeological levels are identified. Three optically stimulated luminescence (OSL) ages show that Unit A dates to between 169.6 ± 9.1 and 151.9 ± 11.1 ka, during the penultimate glacial period (PGP), and contains numerous signs of recurring hearths. Unit B is unexcavated. Unit C dates to between 118.9 ± 11.5 and 103.4 ± 6.9 ka (late Eemian–marine isotope stage (MIS) 5d) and shows an abundance of lithic remains as well as some faunal elements. Unit C is covered by Unit D, which incorporates materials moved downslope, and is dated at 81.2 ± 4.7 ka. These OSL ages concur with U/Th ages (129.3 ± 1.5 and 123.6 ± 0.6 ka) derived from a flowstone covered by both -C and D- post-flowstone units. Finally, Unit E covers the archaeological site, which was partially eroded during MIS2. The robust and well-constrained chronology of the RSM site and surroundings enables the establishment of its evolutionary model from the PGP to the last glacial cycle. The RSM site is the oldest Neanderthal occupation accurately dated in the Pre-Pyrenean region.


Sign in / Sign up

Export Citation Format

Share Document