Origin and dynamics of the northern South American coastal savanna belt during the Holocene – the role of climate, sea-level, fire and humans

2015 ◽  
Vol 122 ◽  
pp. 51-62 ◽  
Author(s):  
Kamaleddin Alizadeh ◽  
Marcelo Cohen ◽  
Hermann Behling
Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


2019 ◽  
Author(s):  
G. Lynn Wingard ◽  
◽  
Miriam C. Jones ◽  
Sarah E. Bergstresser ◽  
Bethany L. Stackhouse ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Naiara P. Araújo ◽  
Radarane S. Sena ◽  
Cibele R. Bonvicino ◽  
Gustavo C.S. Kuhn ◽  
Marta Svartman

<i>Proechimys</i> species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of <i>Proechimys</i> gr. <i>goeldii</i> to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of <i>P.</i> gr. <i>goeldii</i> in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for <i>P.</i> gr. <i>goeldii</i>, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of <i>Proechimys</i> karyotypes.


2011 ◽  
Vol 26 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Ole Bennike ◽  
Bernd Wagner ◽  
Andreas Richter

Polar Science ◽  
2008 ◽  
Vol 2 (2) ◽  
pp. 149-161 ◽  
Author(s):  
C.K. Shum ◽  
Chung-yen Kuo ◽  
Jun-yi Guo

Geomorphology ◽  
2021 ◽  
pp. 107860
Author(s):  
Bettina S. Bozi ◽  
Beatriz L. Figueiredo ◽  
Erika Rodrigues ◽  
Marcelo C.L. Cohen ◽  
Luiz C.R. Pessenda ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.


Sign in / Sign up

Export Citation Format

Share Document