Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots

2017 ◽  
Vol 48 ◽  
pp. 233-242 ◽  
Author(s):  
Ngoc Chi Nam Doan ◽  
Wei Lin
2021 ◽  
Vol 11 (12) ◽  
pp. 5398
Author(s):  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
Aleš Vysocký ◽  
Václav Krys ◽  
Jakub Šafařík ◽  
...  

We describe a method for robotic cell optimization by changing the placement of the robot manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of each joint during the whole trajectory, which depends on the joint angular velocity and torque. The method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot joints for individual robot positions. Verification of the method was performed using CoppeliaSim and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from 22% to 53% depending on the trajectory.


Author(s):  
Maolin Jin ◽  
Jinoh Lee ◽  
Kap-Ho Seo ◽  
Jin-Ho Suh

2018 ◽  
Vol 25 (4) ◽  
pp. 364-373 ◽  
Author(s):  
Tao Shen ◽  
Dietric Hennings ◽  
Carl A. Nelson ◽  
Dmitry Oleynikov

Natural orifice transluminal endoscopic surgery (NOTES) has gained attention as a revolutionary technique with its potential advantages in eliminating skin incisions, shortening recovery time, and decreasing postoperative complications; however, its practical application is still constrained by the complexity of navigation through the surgical field and paucity of available instruments. Current progress on NOTES focuses on designing flexible articulated robots or fully inserted bimanual robots to address the limitations. However, the lack of multitasking tools, trade-offs between size and power, and lack of sufficient surgical force are too often neglected. The authors designed a bimanual robot with a multifunctional manipulator, which can realize on-site instrument-change according to surgeon needs. An articulated drive mechanism with 2 independent curvature sections was designed to deliver the robot to the surgical site. A corresponding reconfiguration operation sequence was formulated to ease insertion and thereby decrease the design trade-off between size and power. This article presents 3 benchtop and animal tests to evaluate the robotic surgery approach and demonstrate the effectiveness of the robot.


Author(s):  
Rishi K. Malhan ◽  
Ariyan M. Kabir ◽  
Brual Shah ◽  
Timotei Centea ◽  
Satyandra K. Gupta

Abstract High-performance composites are widely used in industry because of specific mechanical properties and lightweighting opportunities. Current automation solutions to manufacturing components from prepreg (pre-impregnated precursor material) sheets are limited. Our previous work has demonstrated the technical feasibility of a robotic cell to automate the sheet layup process. Many decisions are required for the cell to function correctly, and the time necessary to make these decisions must be reduced to utilize the cell effectively. Robot placement with respect to the mold is a significant and complex decision problem. Ensuring that robots can collaborate effectively requires addressing multiple constraints related to the robot workspace, singularity, and velocities. Solving this problem requires developing computationally efficient algorithms to find feasible robot placements in the cell. We describe an approach based on successive solution refinement strategy to identify a cell design that satisfies all constraints related to robot placement.


Sign in / Sign up

Export Citation Format

Share Document