An error-bounded B-spline curve approximation scheme using dominant points for CNC interpolation of micro-line toolpath

2020 ◽  
Vol 64 ◽  
pp. 101930 ◽  
Author(s):  
Xu Du ◽  
Jie Huang ◽  
Li-Min Zhu ◽  
Han Ding
2019 ◽  
Vol 13 (4) ◽  
pp. 317-328
Author(s):  
Johannes Bureick ◽  
Hamza Alkhatib ◽  
Ingo Neumann

Abstract B-spline curve approximation is a crucial task in many applications and disciplines. The most challenging part of B-spline curve approximation is the determination of a suitable knot vector. The finding of a solution for this multimodal and multivariate continuous nonlinear optimization problem, known as knot adjustment problem, gets even more complicated when data gaps occur. We present a new approach in this paper called an elitist genetic algorithm, which solves the knot adjustment problem in a faster and more precise manner than existing approaches. We demonstrate the performance of our elitist genetic algorithm by applying it to two challenging test functions and a real data set. We demonstrate that our algorithm is more efficient and robust against data gaps than existing approaches.


2009 ◽  
Vol 626-627 ◽  
pp. 459-464 ◽  
Author(s):  
Lei Luo ◽  
L. Wang ◽  
Jun Hu

An improved interpolation method is presented based on B-spline curve back calculation which regards data points as control points. First, a B-spline surface reconstruction is done, and a favorable condition for real-time interpolation can be provided for NC machining. Then, by prejudging the trajectory feedrate, the tangent vectors of spline curve junction can be calculated, which can be used to establish the spline curve equations based on time. At last, with the equations mentioned above, the trajectory and feedrate profile can be generated simultaneously by the improved interpolation algorithm. An error analysis is also discussed and the feasibility of the improved algorithm is verified by the simulation results.


2004 ◽  
Vol 36 (7) ◽  
pp. 639-652 ◽  
Author(s):  
Huaiping Yang ◽  
Wenping Wang ◽  
Jiaguang Sun

2013 ◽  
Vol 397-400 ◽  
pp. 1093-1098
Author(s):  
Xian Guo Cheng

This paper addresses the problem of B-spline curve approximating to a set of dense and ordered points. We choose local curvature maximum points based on the curvature information. The points and the two end points are viewed as initial feature points, constructing a B-spline curve approximating to the feature points by the least-squares method, refining the feature points according to the shape information of the curve, and updating the curve. This process is repeated until the maximum error is less than the given error bound. The approach adaptively placed fewer knots at flat regions but more at complex regions. Under the same error bound, experimental results showed that our approach can reduce more control points than Parks approach,Piegls approach and Lis approach. The numbers of control points of the curve is equal to that of the feature points after refinement.


Sign in / Sign up

Export Citation Format

Share Document