curve approximation
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 939 (1) ◽  
pp. 012009
Author(s):  
S Amirov ◽  
D Rustamov ◽  
N Yuldashev ◽  
U Mamadaliev ◽  
M Kurbanova

Abstract This article is devoted to the new electromagnetic sensor design of large direct and alternating currents with expanded functionality for the electro supply devices control and management systems on electrified railways. It’s analyzed that its nonlinear magnetic circuit with longitudinal magnetization based on the magnetization curve approximation. Also it’s shown that developed sensor sensitivity depends on working air gap sizes and modulating magnetic field induction.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3084
Author(s):  
Andrea Raffo ◽  
Silvia Biasotti

The approximation of curvilinear profiles is very popular for processing digital images and leads to numerous applications such as image segmentation, compression and recognition. In this paper, we develop a novel semi-automatic method based on quasi-interpolation. The method consists of three steps: a preprocessing step exploiting an edge detection algorithm; a splitting procedure to break the just-obtained set of edge points into smaller subsets; and a final step involving the use of a local curve approximation, the Weighted Quasi Interpolant Spline Approximation (wQISA), chosen for its robustness to data perturbation. The proposed method builds a sequence of polynomial spline curves, connected C0 in correspondence of cusps, G1 otherwise. To curb underfitting and overfitting, the computation of local approximations exploits the supervised learning paradigm. The effectiveness of the method is shown with simulation on real images from various application domains.


Author(s):  
О. V. Frolov ◽  
M. U. Losev

Context. Piecewise linear approximation of curves has a large number of applications in computer algorithms, as the reconstruction of objects of complex shapes on monitors, CNC machines and 3D printers. In many cases, it is required to have the smallest number of segments for a given accuracy. Objective. The objective of this paper is to improve the method of asymptotically optimal piecewise linear interpolation of plane parametric curves. This improvement is based to research influence of the method parameters and algorithms to distributions of approximation errors. Method. An asymptotically optimal method of curves interpolation is satisfied to the condition of minimum number of approximation units. Algorithms for obtaining the values of the sequence of approximation nodes are suggested. This algorithm is based on numerical integration of the nodes regulator function with linear and spline interpolation of its values. The method of estimating the results of the curve approximation based on statistical processing of line segments sequence of relative errors is substantiated. Modeling of real curves approximation is carried out and influence of the sampling degree of integral function – the nodes regulator on distribution parameters of errors is studied. The influence is depending on a method of integral function interpolation. Results. Research allows to define necessary the number of discretization nodes of the integral function in practical applications. There have been established that with enough sampling points the variance of the error’s distribution stabilizes and further increasing this number does not significantly increase the accuracy of the curve approximation. In the case of spline interpolation of the integral function, the values of the distribution parameters stabilized much faster, which allows to reduce the number of initial sampling nodes by 5–6 times having similar accuracy. Conclusions. Modelling of convex planar parametric curves reconstruction by an asymptotically optimal linear interpolation algorithm showed acceptable results without exceeding the maximum errors limit in cases of a sufficient discretization of the integral function. The prospect of further research is to reduce the computational complexity when calculating the values of the integral distribution function by numerical methods, and to use discrete analogues of derivatives in the expression of this function.


2021 ◽  
Vol 83 (1) ◽  
Author(s):  
Daniel E. Williamson ◽  
Erik Sahai ◽  
Robert P. Jenkins ◽  
Reuben D. O’Dea ◽  
John R. King

AbstractFluorescence recovery after photobleaching (FRAP) is a common experimental method for investigating rates of molecular redistribution in biological systems. Many mathematical models of FRAP have been developed, the purpose of which is usually the estimation of certain biological parameters such as the diffusivity and chemical reaction rates of a protein, this being accomplished by fitting the model to experimental data. In this article, we consider a two species reaction–diffusion FRAP model. Using asymptotic analysis, we derive new FRAP recovery curve approximation formulae, and formally re-derive existing ones. On the basis of these formulae, invoking the concept of Fisher information, we predict, in terms of biological and experimental parameters, sufficient conditions to ensure that the values all model parameters can be estimated from data. We verify our predictions with extensive computational simulations. We also use computational methods to investigate cases in which some or all biological parameters are theoretically inestimable. In these cases, we propose methods which can be used to extract the maximum possible amount of information from the FRAP data.


Author(s):  
Athena Jalalian ◽  
Soheil Arastehfar ◽  
Ian Gibson ◽  
Francis E. H. Tay ◽  
Gabriel Liu

Abstract This paper studies how biomechanical multibody models of scoliosis can neglect the changes of spinal length and yet be accurate in reconstructing spinal columns. As these models with fixed length comprise rigid links interconnected by rotary joints, they resemble polygonal chains that approximate spine curves with a finite number of line segments. In mathematics, using more segments with shorter length can result in more accurate curve approximations. This raises the question of whether more accurate spine curve approximations by increasing the number of links/joints can yield more accurate spinal column reconstructions. For this, the accuracy of spine curve approximation was improved consistently by increasing the number of links/joints, and its effects on the accuracy of spinal column reconstruction were assessed. Positive correlation was found between the accuracy of spine reconstruction and curve approximation. It was shown that while increasing the accuracy of curve approximations, the representation of scoliosis concavity and its side-to-side deviations were improved. Moreover, reconstruction errors of the spine regions separated by the inflection vertebrae had minimal impacts on each other. Overall, multibody scoliosis models with fixed spinal length can benefit from the extra rotational joints that contribute towards the accuracy of spine curve approximation. The outcome of this study leads to concurrent accuracy improvement and simplification of multibody models; joint-link configurations can be independently defined for the regions separated by the inflection vertebrae, enabling local optimization of the models for higher accuracy without unnecessary added complexity to the whole model.


Author(s):  
Viktor Vanin ◽  
Mykola Kruhol ◽  
Oleksandr Lasurenko

The paper presents algebraic mathematical models of centrifugal mechanisms that operate in the power boiler gas-hydraulic circuit. The models have been built by means of head-flow curve approximation. The head-flow curve depends on the centrifugal mechanism blade rotating speed and guide vane angle. The least squares method has been applied for centrifugal mechanism head-curve approximation on the basis of experimental or numerical data. Different configurations for the connections of centrifugal mechanisms in the power boiler gas-hydraulic circuit have been considered, relationships for their performance assessment obtained, and efficiency factors for various methods of their capacity control introduced. The state equation for a complex gas-hydraulic network in the problem of its efficiency analysis has been obtained with application of Kirchhoff laws. Numerical algorithms have been developed to solve group control parameter optimization problems for the considered connections of centrifugal mechanisms. Features of mathematical models for groups of series-, parallel- and complex-connected centrifugal mechanisms with different head curves in the power boiler maintenance system have been specified. An optimal group control problem for a group of centrifugal mechanisms has been formulated and solved under various power boiler modes. For the feed pumps, individual frequency control proves to be the most effective method, while for the boiler draft mechanisms group frequency regulation turns out to be the most efficient. In a typical summer month, implementation of energy-efficient centrifugal mechanism capacity regulation method in a Thermal Power Plant is shown to result in auxiliary electricity consumption reduction by 10.96 % as compared with available actual data.


2021 ◽  
Vol 15 ◽  
pp. 31
Author(s):  
S.V. Babenko ◽  
V.I. Ruban

We investigate the interrelations between the error of one method of curve approximation and the error of the best approximation.


Sign in / Sign up

Export Citation Format

Share Document