Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system

2013 ◽  
Vol 55 ◽  
pp. 18-23 ◽  
Author(s):  
Sudhansu S. Sahoo ◽  
Shinu M. Varghese ◽  
C. Suresh Kumar ◽  
S.P. Viswanathan ◽  
Suneet Singh ◽  
...  
Author(s):  
Abiem Louis Tersoo ◽  
Akoshile Clement Olufemi

The performance of a thermosiphon based parabolic trough collector (PTC) used for direct steam generation depends largely on the heat losses of the solar thermal system. This paper presents an experimental investigation of the heat losses in a thermosiphon based solar thermal system that used a linear receiver with a PTC for the generation of low temperature steam. A locally constructed PTC was used to concentrate sun rays to a linear copper pipe enclosed in an evacuated glass tube and held at the focal line of the PTC to heat water and generate steam. Circulation of the water in the closed-loop solar thermal system was through natural convection. A solar meter was used to measure the incident radiation flux at the experimental site and PT100 temperature sensors were installed at different points of the system to measure the temperature distribution within the system. The thermal efficiency and overall heat losses of the system were investigated by fitting the experimental data to standard equations. The results showed that the instantaneous thermal efficiency of the system was 46.48%, 43.1% and 45.32% respectively for three days examined. The overall heat losses in the system were 1211.95, 974.32 and 911.26 kwh per day respectively for the three days investigated. Heat losses from the tank accounted for over 83% of the losses for all the days examined. The evacuated glass tube reduced heat losses from the receiver to very low values of 2.31, 1.63 and 1.43 KWh per day respectively for the three days tested. The use of a better insulating material on the tank was recommended to reduce convective and conductive heat losses, thereby enhancing the performance of the system.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 735-743
Author(s):  
Sanju Thomas ◽  
Ajith Kumar ◽  
Sudhansu Sahoo ◽  
Shinu Varghese

A methodology has been presented related to entropy generation due to forced convection boiling in long absorber tubes used in linear Fresnel reflector solar thermal system. Variable heat flux has been applied on the tube which replicates the scenario for aforementioned tubes and local entropy generation has been obtained for various parameters. Mathematical modeling has been made separately for single-phase and two-phase regions in flow boiling conditions encountered in linear Fresnel reflector tubes. Entropy generation in two-phase region has been formulated using homogeneous equilibrium model. The entropy generation at varying mass flux and heat flux cases are calculated. The entropy generation due to heat transfer is found to be more than that of pressure drop. Still, entropy generation due to pressure drop in two-phase region plays a major role of increasing nature of it. Present approach will help researchers and industry to optimize the solar thermal systems where flow related phase change occurs and measures can be taken accordingly to increase energy efficiency of those systems.


2020 ◽  
Vol 18 (1) ◽  
pp. 90-99
Author(s):  
Mawada Abdellatif ◽  
Stephen Baynes ◽  
Yassin Osman ◽  
Laurence Brady ◽  
Jeff Cullen ◽  
...  

2014 ◽  
Vol 84 ◽  
pp. 261-267 ◽  
Author(s):  
Enio Pedone Bandarra Filho ◽  
Oscar Saúl Hernandez Mendoza ◽  
Carolina Lau Lins Beicker ◽  
Adonis Menezes ◽  
Dongsheng Wen

Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


2021 ◽  
Vol 1059 (1) ◽  
pp. 012061
Author(s):  
B Kalidasan ◽  
R Divyabharathi ◽  
AK Pandey ◽  
C Subramaniyan ◽  
S Mohankumar

2019 ◽  
Vol 137 ◽  
pp. 56-66 ◽  
Author(s):  
Christodoulos N. Antoniadis ◽  
Georgios Martinopoulos

Sign in / Sign up

Export Citation Format

Share Document