Performance improvement of a single-flash geothermal power plant in Dieng, Indonesia, upon conversion to a double-flash system using thermodynamic analysis

2015 ◽  
Vol 80 ◽  
pp. 424-431 ◽  
Author(s):  
Nugroho Agung Pambudi ◽  
Ryuichi Itoi ◽  
Saeid Jalilinasrabady ◽  
Khasani Jaelani
1999 ◽  
Vol 121 (4) ◽  
pp. 295-301 ◽  
Author(s):  
M. Kanog˘lu ◽  
Y. A. C¸engel

Performance evaluation of a 12.8-MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50 percent of the energy and 40 percent of the exergy available in the reservoir. The first and second-law efficiencies of the plant are determined to be 6 percent and 22 percent, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4 percent. Some well-known geothermal power generation technologies including double-flash, binary, and combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1137
Author(s):  
Dario Colorado-Garrido ◽  
Gerardo Alcalá-Perea ◽  
Francisco Alejandro Alaffita-Hernández ◽  
Beatris Adriana Escobedo-Trujillo

The purpose of this research is the calculation of the exergy destruction of the single-flash and double-flash cycles of a geothermal power plant located on the ladder of the 233 m Cerro Prieto volcano, on the alluvial plain of the Mexicali Valley, Mexico. The methodology developed in this research presents thermodynamic models for energy and exergy flows, which allows determining the contribution of each component to the total exergy destruction of the system. For the case-base, the results indicate that for the single-flash configuration the efficiency of the first and second law of thermodynamics are 0.1888 and 0.3072, as well as the highest contribution to the total exergy destruction is provided by the condenser. For the double-flash configuration, the efficiency of the first and second law of thermodynamics are 0.3643 and 0.4983. The highest contribution to the total exergy destruction is provided by the condenser and followed by the low-pressure turbine.


2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


Sign in / Sign up

Export Citation Format

Share Document