scholarly journals LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant

2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.

Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


Energy ◽  
2015 ◽  
Vol 86 ◽  
pp. 476-487 ◽  
Author(s):  
Elvira Buonocore ◽  
Laura Vanoli ◽  
Alberto Carotenuto ◽  
Sergio Ulgiati

2020 ◽  
Vol 12 (7) ◽  
pp. 2786 ◽  
Author(s):  
Riccardo Basosi ◽  
Roberto Bonciani ◽  
Dario Frosali ◽  
Giampaolo Manfrida ◽  
Maria Laura Parisi ◽  
...  

A life cycle analysis was performed for the assessment of the environmental performances of three existing Italian power plants of comparable nominal power operating with different sources of renewable energy: Geothermal, solar, and wind. Primary data were used for building the life cycle inventories. The results are characterized by employing a wide portfolio of environmental indicators employing the ReCiPe 2016 and the ILCD 2011 Midpoint+ methods; normalization and weighting are also applied using the ReCiPe 2016 method at the endpoint level. The midpoint results demonstrate a good eco-profile of the geothermal power plant compared to other renewable energy systems and a definite step forward over the performance of the national energy mix. The Eco-Point single score calculation showed that wind energy is the best technology with a value of 0.0012 Eco-points/kWh, a result in line with previously documented life cycle analysis studies. Nevertheless, the geothermal power plant achieved a value of 0.0177 Eco-points/kWh which is close to that calculated for the photovoltaic plant (0.0087 Eco-points/kWh) and much lower than the national energy mix one (0.1240 Eco-points/kWh). Also, a scenario analysis allowed for a critical discussion about potential improvements to the environmental performance of the geothermal power plant.


2006 ◽  
Vol 129 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Ahmet Dagdas

One of the most important cycles for electricity generation from geothermal energy is the double-flash cycle. Approximately 25% of the total geothermal based electricity generation all over the world comes from double-flash geothermal power plants. In this paper, performance analysis of a hypothetical double-flash geothermal power plant is performed and variations of fundamental characteristics of the plant are examined. In the performance analysis, initially, optimum flashing pressures are determined, and energy and exergy values of the base points of the plant are calculated. In addition, first and second law efficiencies of the power plant are calculated. Main exergy destruction locations are determined and these losses are illustrated in an exergy flow diagram. For these purposes, it is assumed that a hypothetical double-flash geothermal power plant is constructed in the conditions of western Turkey. The geothermal field where the power plant will be built produces geofluid at a temperature of 210°C and a mass flow rate of 200kg∕s. According to simulation results, it is possible to produce 11,488kWe electrical power output in this field. Optimum first and second flashing pressures are determined to be 530kPa and 95kPa, respectively. Based on the exergy of the geothermal fluid at reservoir, overall first and second law efficiencies of the power plant are also calculated to be 6.88% and 28.55%, respectively.


1999 ◽  
Vol 121 (4) ◽  
pp. 295-301 ◽  
Author(s):  
M. Kanog˘lu ◽  
Y. A. C¸engel

Performance evaluation of a 12.8-MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50 percent of the energy and 40 percent of the exergy available in the reservoir. The first and second-law efficiencies of the plant are determined to be 6 percent and 22 percent, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4 percent. Some well-known geothermal power generation technologies including double-flash, binary, and combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.


Author(s):  
Harwan Ahyadi

Cooling tower is very necessary in every industry, especially in the geothermal power plant industry in the framework of implementation for efficiency and energy conversion where a tool or unit is used for circulation of cooling water. The function of the cooling tower is to process hot water into cold water, so that it can be used again. In the cooling tower specification data, the range value is 16.7 ° C, with an approach of 6.5 ° C, and with an efficiency of 71.98%. The results of the calculation of the analysis obtained a range value of 22.3 ° C, with an approach of 6.3 ° C, and with an efficiency of 77.97%. From the results of the analysis, the range, approach, and efficiency values were increased by 5.92% compared to the cooling tower specification data. Keywords: Cooling Tower, Inducted Draft, Range, Approach, Efficiency


Sign in / Sign up

Export Citation Format

Share Document