Enhanced processing of exhaust gas and power generation by connecting mini-tubular microbial fuel cells in series with a biotrickling filter

2020 ◽  
Vol 156 ◽  
pp. 342-348
Author(s):  
Shu-Hui Liu ◽  
Sih-Hua Fu ◽  
Chia-Ying Chen ◽  
Chi-Wen Lin
2021 ◽  
pp. 127583
Author(s):  
Mohammad Faisal Umar ◽  
Mohd Rafatullah ◽  
Syed Zaghum Abbas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Norli Ismail

Author(s):  
Yao Yin ◽  
Guangtuan Huang ◽  
Ningbo Zhou ◽  
Yongdi Liu ◽  
Lehua Zhang

2017 ◽  
Vol 31 (6) ◽  
pp. 6132-6139 ◽  
Author(s):  
M. Amirul Islam ◽  
Baranitharan Ethiraj ◽  
Chin Kui Cheng ◽  
Abu Yousuf ◽  
Md. Maksudur Rahman Khan

2013 ◽  
Vol 142 ◽  
pp. 109-114 ◽  
Author(s):  
Xiaoyuan Zhang ◽  
Juan Shi ◽  
Peng Liang ◽  
Jincheng Wei ◽  
Xia Huang ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 100-108
Author(s):  
Aiichiro Fujinaga ◽  
Shogo Taniguchi ◽  
Ryohei Takanami ◽  
Hiroaki Ozaki ◽  
Tsuneharu Tamatani ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1383 ◽  
Author(s):  
Liping Fan ◽  
Junyi Shi ◽  
Tian Gao

Proton exchange membrane is an important factor affecting the power generation capacity and water purification effect of microbial fuel cells. The performance of microbial fuel cells can be improved by modifying the proton exchange membrane by some suitable method. Microbial fuel cells with membranes modified by SiO2/PVDF (polyvinylidene difluoride), sulfonated PVDF and polymerized MMA (methyl methacrylate) electrolyte were tested and their power generation capacity and water purification effect were compared. The experimental results show that the three membrane modification methods can improve the power generation capacity and water purification effect of microbial fuel cells to some extent. Among them, the microbial fuel cell with the polymerized MMA modified membrane showed the best performance, in which the output voltage was 39.52 mV, and the electricity production current density was 18.82 mA/m2, which was 2224% higher than that of microbial fuel cell with the conventional Nafion membrane; and the COD (chemical oxygen demand) removal rate was 54.8%, which was 72.9% higher than that of microbial fuel cell with the conventional Nafion membrane. Modifying the membrane with the polymerized MMA is a very effective way to improve the performance of microbial fuel cells.


Sign in / Sign up

Export Citation Format

Share Document