The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source-sink matching analysis for existing coal-fired power plants

2022 ◽  
Vol 178 ◽  
pp. 106070
Author(s):  
Kai Li ◽  
Shuo Shen ◽  
Jing-Li Fan ◽  
Mao Xu ◽  
Xian Zhang
2021 ◽  
Vol 44 (2) ◽  
pp. 97-106
Author(s):  
Usman Usman ◽  
Dadan DSM Saputra ◽  
Nurus Firdaus

The carbon capture utilization and storage (CCUS) referred in this paper is limited to the use of CO2 to the enhanced oil recovery (CO2-EOR). The CCUS CO2-EOR technology can magnify oil production substantially while a consistent amount of the CO2 injected remains sequestrated in the reservoir, which is beneficial for reducing the greenhouse gas emission. Therefore, this technology is a potentially attractive win-win solution for Indonesia to meet the goal of improved energy supply and security, while also reducing CO2 emissions over the long term. The success of CCUS depends on the proper sources-sinks matching. This paper presents a systematic approach to pairing the CO2 captured from industrial activities with suitable oil fields for CO2-EOR. Inventories of CO2 sources and oil reservoirs were done through survey and data questionnaires. The process of sources-sinks matching was preceded by identifying the CO2 sources within the radius of 100 and 200 km from each oil field and clustering the fields within the same radius from each CO2 source. Each cluster is mapped on the GIS platform included existing and planning right of way for trunk pipelines. Pairing of source-sink are ranked to identify high priority development. Results of this study should be interest to project developers, policymakers, government agencies, academicians, civil society and environmental non-governmental organization in order to enable them to assess the role of CCUS CO2-EOR as a major carbon management strategy.


2021 ◽  
Vol 44 (2) ◽  
pp. 121-130
Author(s):  
Usman Usman

The carbon capture utilization and storage (CCUS) referred in this paper is limited to the use of CO2 to the enhanced oil recovery (CO2-EOR). The CCUS CO2-EOR technology can magnify oil production substantially while a consistent amount of the CO2 injected remains sequestrated in the reservoir, which is beneficial for reducing the greenhouse gas emission. Therefore, this technology is a potentially attractive win-win solution for Indonesia to meet the goal of improved energy supply and security, while also reducing CO2 emissions over the long term. The success of CCUS depends on the proper sources-sinks matching. This paper presents a systematic approach to pairing the CO2 captured from industrial activities with suitable oil fields for CO2-EOR. Inventories of CO2 sources and oil reservoirs were done through survey and data questionnaires. The process of sources-sinks matching was preceded by identifying the CO2 sources within the radius of 100 and 200 km from each oil field and clustering the fields within the same radius from each CO2 source. Each cluster is mapped on the GIS platform included existing and planning right of way for trunk pipelines. Pairing of source-sink are ranked to identify high priority development. Results of this study should be interest to project developers, policymakers, government agencies, academicians, civil society and environmental non-governmental organization in order to enable them to assess the role of CCUS CO2-EOR as a major carbon management strategy.


2018 ◽  
Vol 78 ◽  
pp. 148-159 ◽  
Author(s):  
Adriano Vinca ◽  
Marianna Rottoli ◽  
Giacomo Marangoni ◽  
Massimo Tavoni

Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


Sign in / Sign up

Export Citation Format

Share Document