scholarly journals Comparative Environmental, Economic, and Jobs Impacts in the USA of Renewable Energy Compared to Carbon Capture, Utilization, and Storage

Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7026
Author(s):  
Abishek Kasturi ◽  
Sotira Yiacoumi ◽  
Matthew Langholtz ◽  
Joanna McFarlane ◽  
Ingrid Busch ◽  
...  

Bioenergy with carbon capture and storage (BECCS) can sequester atmospheric CO2, while producing electricity. The CO2 avoidance cost (CAC) is used to calculate the marginal cost of avoided CO2 emissions for BECCS as compared to other established energy technologies. A comparative analysis using four different reference-case power plants for CAC calculations is performed here to evaluate the CO2 avoidance cost of BECCS implementation. Results from this work demonstrate that BECCS can generate electricity at costs competitive with other neutral emissions technologies, while simultaneously removing CO2 from the atmosphere. Approximately 73% of current coal power plants are approaching retirement by the year 2035 in the U.S. After considering CO2 sequestered from the atmosphere and coal power plant CO2 emissions displaced by BECCS, CO2 emissions can be reduced by 1.4 billion tonnes per year in the U.S. alone at a cost of $88 to $116 per tonne of CO2 removed from the atmosphere, for 10% to 90% of available biomass used, respectively. CAC calculations in this paper indicate that BECCS can help the U.S. and other countries transition to a decarbonized electricity grid, as simulations presented in this paper predict that BECCS power plants operate at lower CACs than coal plants with CCS.


2007 ◽  
Vol 1041 ◽  
Author(s):  
Roberto Dones ◽  
Christian Bauer ◽  
Thomas Heck ◽  
Oliver Mayer-Spohn ◽  
Markus Blesl

AbstractThe NEEDS project of the European Commission (2004-2008) continues the ExternE series, aiming at improving and integrating external cost assessment, LCA, and energy-economy modeling, using multi-criteria decision analysis for technology roadmap up to year 2050. The LCA covers power systems suitable for Europe. The paper presents environmental inventories and cumulative results for selected representative evolutionary hard coal and lignite power technologies, namely the Ultra-Supercritical Pulverized Combustion (USC-PC) and Integrated Gasification Combined Cycle (IGCC) technologies. The power units are modeled with and without Carbon Capture and Storage (CCS). The three main technology paths for CO2 capture are represented, namely pre-combustion, post-combustion, and oxy-fuel combustion. Pipeline transport and storage in geological formations like saline aquifers and depleted gas reservoirs, which are the most likely solutions to be implemented in Europe, are modeled for assumed average conditions. The entire energy chains from fuel extraction through, when applicable, the ultimate sequestration of CO2, are assessed, using ecoinvent as background LCA database.The results show that adding CCS to fossil power plants, although resulting in a large net decrease of the CO2 effluents to the atmosphere per unit of electricity, is likely to produce substantially more GHG than claimed by near-zero emission power plant promoters when the entire energy chain is accounted for, especially for post-combustion capture technologies and hard coal as a fuel. Besides, the lower net power plant efficiencies lead to higher consumption rate of non-renewable fossil fuel. Furthermore, consideration of the full spectrum of environmental burdens besides greenhouse gas (GHG) results in a less definite picture of the energy chain with CCS than obtained by just focusing on GHG reduction.


2021 ◽  
Vol 13 (19) ◽  
pp. 11084
Author(s):  
Han Wang ◽  
Zhenghui Fu ◽  
Shulan Wang ◽  
Wenjie Zhang

The linear programming (LP) model has been used to identify a cost-effective strategy for reducing CO2 emissions in power plants considering coal washing, pollutant removal, and carbon capture processes, thus CO2 emissions in different production processes can be obtained. The direct emissions (combustion emissions and desulfurization emissions) and indirect emissions (pollutant removal, coal washing, and carbon capture) of CO2 were all considered in the LP model. Three planning periods were set with different CO2 emission control desirability to simulate CO2 emissions of the different reduction requirements. The results can reflect the CO2 emissions across the whole production process of a coal-fired power plant overall. The simulation results showed that for a coal-fired power plant containing two 1000 MW ultra super-critical sets, when the desirability was 0.9, the CO2 total emissions were 2.15, 1.84, and 1.59 million tons for the three planning periods. The research results suggest that the methodology of LP combined with fuzzy desirability function is applicable to represent the whole production process of industry sectors such as coal-fired power plants. The government policy makers could predict CO2 emissions by this method and use the results as a reference to conduct effective industrial and energy structure adjustment.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Staffan Qvist ◽  
Paweł Gładysz ◽  
Łukasz Bartela ◽  
Anna Sowiżdżał

Out of 2 TWe of coal power plant capacity in operation globally today, more than half is less than 14 years old. Climate policy related to limiting CO2-emissions makes the longer-term operation of these plants untenable. In this study, we assess the spectrum of available options for the future of both equipment and jobs in the coal power sector by assessing the full scope of “retrofit decarbonization” options. Retrofit decarbonization is an umbrella term that includes adding carbon capture, fuel conversion, and the replacement of coal boilers with new low-carbon energy sources, in each case re-using as much of the existing equipment as economically practicable while reducing or eliminating emissions. This article explores this idea using the Polish coal power fleet as a case study. Retrofit decarbonization in Poland was shown to be most attractive using high-temperature small modular nuclear reactors (SMRs) to replace coal boilers, which can lower upfront capital costs by ~28–35% and levelized cost of electricity by 9–28% compared to a greenfield installation. If retrofit decarbonization is implemented globally by the late 2020s, up to 200 billion tons of otherwise-committed CO2-emissions could be avoided.


Sign in / Sign up

Export Citation Format

Share Document