New Jersey's paleoflora and eastern North American climate through Paleogene–Neogene warm phases

2020 ◽  
Vol 279 ◽  
pp. 104224
Author(s):  
Sabine Prader ◽  
Ulrich Kotthoff ◽  
David R. Greenwood ◽  
Francine M.G. McCarthy ◽  
Gerhard Schmiedl ◽  
...  
2004 ◽  
Vol 23 (2) ◽  
pp. 117-132 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
S. Levis ◽  
M. Vertenstein

2019 ◽  
Vol 522 ◽  
pp. 125-134 ◽  
Author(s):  
Hai Cheng ◽  
Gregory S. Springer ◽  
Ashish Sinha ◽  
Benjamin F. Hardt ◽  
Liang Yi ◽  
...  

Science ◽  
1999 ◽  
Vol 283 (5405) ◽  
pp. 1109-1109
Author(s):  
R. A. Kerr

Science ◽  
2003 ◽  
Vol 302 (5648) ◽  
pp. 1200-1203 ◽  
Author(s):  
D. J. Karoly

2013 ◽  
Vol 26 (23) ◽  
pp. 9209-9245 ◽  
Author(s):  
Justin Sheffield ◽  
Andrew P. Barrett ◽  
Brian Colle ◽  
D. Nelun Fernando ◽  
Rong Fu ◽  
...  

This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.


2013 ◽  
Vol 26 (23) ◽  
pp. 9247-9290 ◽  
Author(s):  
Justin Sheffield ◽  
Suzana J. Camargo ◽  
Rong Fu ◽  
Qi Hu ◽  
Xianan Jiang ◽  
...  

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.


Sign in / Sign up

Export Citation Format

Share Document