tree ring
Recently Published Documents


TOTAL DOCUMENTS

3463
(FIVE YEARS 766)

H-INDEX

106
(FIVE YEARS 11)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Shah ◽  
J. Yu ◽  
Q. Liu ◽  
G. Zhou ◽  
G. Yan ◽  
...  

Abstract Climatic factors play an essential role in the growth of tree ring width. In this study, we aimed to evaluate the correlation between climatic variables and tree-ring growth characteristics of Pinus sibirica in Altai mountains, northwestern China. This study being is first of its kind on climate growth analysis of Pinus sibirica in northwestern China. The study showed great potential to understand the species growing under the specific climatic conditions. Total of 70 tree cores collected from three sites in the sampling area, out of which 63 tree cores considered for this study. The effect of climatic variables which was studied include precipitation, temperature and PDSI. Our results showed that Tree Ring Width chronology has a significantly positive correlation with the late winter (March) temperature and significant negative correlation with the July temperatures. A significant correlation was observed with the late summer precipitation whereas no significant relation found with the Palmer Drought Severity Index. These significant correlations with temperature and precipitation suggested that this tree species had the potential for the reconstruction of the past climate in the area.


2022 ◽  
Vol 41 ◽  
pp. 103289
Author(s):  
Nicholas V. Kessler ◽  
Matthew C. Guebard ◽  
Gregory W.L. Hodgins ◽  
Lucas Hoedl

2022 ◽  
Author(s):  
Ulf Büntgen ◽  
Sylvie Hodgson Smith ◽  
Sebastian Wagner ◽  
Paul Krusic ◽  
Jan Esper ◽  
...  

AbstractThe largest explosive volcanic eruption of the Common Era in terms of estimated sulphur yield to the stratosphere was identified in glaciochemical records 40 years ago, and dates to the mid-thirteenth century. Despite eventual attribution to the Samalas (Rinjani) volcano in Indonesia, the eruption date remains uncertain, and the climate response only partially understood. Seeking a more global perspective on summer surface temperature and hydroclimate change following the eruption, we present an analysis of 249 tree-ring chronologies spanning the thirteenth century and representing all continents except Antarctica. Of the 170 predominantly temperature sensitive high-frequency chronologies, the earliest hints of boreal summer cooling are the growth depressions found at sites in the western US and Canada in 1257 CE. If this response is a result of Samalas, it would be consistent with an eruption window of circa May–July 1257 CE. More widespread summer cooling across the mid-latitudes of North America and Eurasia is pronounced in 1258, while records from Scandinavia and Siberia reveal peak cooling in 1259. In contrast to the marked post-Samalas temperature response at high-elevation sites in the Northern Hemisphere, no strong hydroclimatic anomalies emerge from the 79 precipitation-sensitive chronologies. Although our findings remain spatially biased towards the western US and central Europe, and growth-climate response patterns are not always dominated by a single meteorological factor, this study offers a global proxy framework for the evaluation of paleoclimate model simulations.


2022 ◽  
Vol 12 (2) ◽  
pp. 859
Author(s):  
Giulia Boccacci ◽  
Francesca Frasca ◽  
Chiara Bertolin ◽  
Anna Maria Siani

Among non-destructive testing (NDT) techniques applied to structural health monitoring in existing timber structures, ranging from visual inspection to more sophisticated analysis, acoustic emission (AE) is currently seldomly used to detect mechanical stresses in wooden building assets. This paper presents the results from a systematic literature review on AE NDT applied to monitor micro and macro fracture events in softwood, specifically Scots pine. This survey particularly investigates its application with respect to the tree rings density and grain angle inspection, as influencing factors well correlated with physical and mechanical characteristics of wood. The literature review was performed in a three-step process defined by the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram, leading to the selection of 31 documents from different abstract and citation databases (Scopus, Web of Science and Google Scholar). The outcomes have highlighted how laboratory experiments, including several types of tests (tensile, cutting, compressive, etc.), were conducted in most cases, while a very limited number of studies investigated on in situ monitoring. In addition, theoretical approaches were often explored in parallel with the experimental one. It emerges that—for tree ring density studies—a multi-technique approach, which may include microscopic observations, could be more informative. Indeed, although not widely investigated, high/low tree ring density and grain angle were found as influencing factors on the AE parameters detected by the sensors, during condition and structural health monitoring experiments.


2022 ◽  
Author(s):  
Miroslav Poláček ◽  
Alexis Arizpe ◽  
Patrick Hüther ◽  
Lisa Weidlich ◽  
Sonja Steindl ◽  
...  

We present an implementable neural network-based automated detection and measurement of tree-ring boundaries from coniferous species. We trained our Mask R-CNN extensively on over 8,000 manually annotated rings. We assessed the performance of the trained model from our core processing pipeline on real world data. The CNN performed well, recognizing over 99% of ring boundaries (precision) and a recall value of 95% when tested on real world data. Additionally, we have implemented automatic measurements based on minimum distance between rings. With minimal editing for missed ring detections, these measurements were a 99% match with human measurements of the same samples. Our CNN is readily deployable through a Docker container and requires only basic command line skills. Application outputs include editable annotations which facilitate the efficient generation of ring-width measurements from tree-ring samples, an important source of environmental data.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Jiachuan Wang ◽  
Shuheng Li ◽  
Yili Guo ◽  
Qi Yang ◽  
Rui Ren ◽  
...  

Larix principis-rupprechtii is an important afforestation tree species in the North China alpine coniferous forest belt. Studying the correlations and response relationships between Larix principis-rupprechtii radial growth and climatic factors at different elevations is helpful for understanding the growth trends of L. principis-rupprechtiind its long-term sensitivity and adaptability to climate change. Pearson correlation, redundancy (RDA), and sliding analysis were performed to study the correlations and dynamic relationships between radial growth and climatic factors. The main conclusions are as follows: (1) The three-elevation standard chronologies all exhibited high characteristic values, contained rich climate information and were suitable for tree-ring climatological analyses. (2) Both temperature and precipitation restricted low-elevation L. principis-rupprechtii radial growth, while monthly maximum temperatures mainly affected mid-high-elevation L. principis-rupprechtii radial growth. (3) Mid-elevation L. principis-rupprechtii radial growth responded to climate factors with a “lag effect” and was not restricted by spring and early summer drought. (4) Long-term sliding analysis showed that spring temperatures and winter precipitation were the main climatic factors restricting L. principis-rupprechtii growth under warming and drying climate trends at different elevations. The tree-ring width index and Palmer drought severity index (PDSI) were positively correlated, indicating that L. principis-rupprechtii growth is somewhat restricted by drought. These results provide a reference and guidance for L. principis-rupprechtii management and sustainable development in different regions under warming and drying background climate trends.


Author(s):  
Christine Lucas ◽  
Isabella Aguilera-Betti ◽  
Ariel A Muñoz ◽  
Paulina Puchi ◽  
Gonzalo Sapriza ◽  
...  

Regional teleconnections permit cross-continental modeling of hydroclimate throughout the world. Tree-rings are a good hydroclimatic proxy used to reconstruct drought and streamflow in regions that respond to common global forcings. We used a multi-species dataset of 32 tree-ring width chronologies from Chile and Uruguay as a climate proxy to infer annual streamflow (Q) variability in the Negro River basin, a grassland-dominated watershed of lowland Southeastern South America. A positive linear correlation between tree-ring chronologies from Central Chile and annual Negro River instrumental streamflow from 1957 to 2012 indicated a cross-continental teleconnection between hydroclimate variability in Central Chile and Northeastern Uruguay. This relationship was mediated in part by the El Niño Southern Oscillation (ENSO), whereby the El Nino 3.4 Index was positively correlated with regional rainfall, annual tree growth, and Q anomalies. Despite the proximity of Uruguayan tree-ring chronologies to Negro River hydrometric stations, the Chilean tree-ring chronologies best predicted annual streamflow. Thus, using tree-ring data from four long-term moisture-sensitive chronologies of the species Cryptocarya alba in Central Chile (32–34°S), we present the first streamflow reconstruction (1890–2009) in the lower La Plata Basin. The reconstruction supports regional evidence for increasing frequency of extreme flood years over the past century in Uruguay. We demonstrate how climate teleconnections that mediate local hydroclimate variability permit the cross-continental reconstruction of streamflow, filling a major geographical gap in historical proxies for flooding and drought in grassland biomes of the southern hemisphere.


Sign in / Sign up

Export Citation Format

Share Document