scholarly journals Effects of the vibrating graphene membrane and the driven classical field on an atomic system coupled to a cavity field

2021 ◽  
pp. 105012
Author(s):  
Maged Faihan Alotibi ◽  
E.M. Khalil ◽  
S. Abdel-Khalek ◽  
M.Y. Abd-Rabbou ◽  
Mohamed Omri
2021 ◽  
Author(s):  
eied khalil ◽  
S. Abdel-Khalek ◽  
M.Y. Abd-Rabbou ◽  
Mohamed Omri ◽  
Maged Faihan Alotibi

2007 ◽  
Vol 7 (8) ◽  
pp. 775-781
Author(s):  
S.-B. Zheng

We show that entanglement of multiple atoms can arise via resonant interaction with a displaced thermal field with a macroscopic photon-number. The cavity field acts as the catalyst, which is disentangled with the atomic system after the operation. Remarkably, the entanglement speed does not decrease as the average photon-number of the mixed thermal state increases. The atoms may evolve to a highly entangled state even when the photon-number of the cavity mode approaches infinity.


2009 ◽  
Vol 07 (08) ◽  
pp. 1459-1467 ◽  
Author(s):  
LIN-LIN XU ◽  
YA-FEI YU ◽  
ZHI-MING ZHANG

In this paper, we present a scheme to prepare the W state and the GHZ state of many atomic ensembles based on the dynamics of the atomic system of a single control atom and an atomic ensemble dispersively coupling with a cavity, where the control atom is illuminated by a highly detuned auxiliary classical field at the same time. The dynamics of the atomic system can be described by an effective Jaynes–Cummings model (JCM) with the atomic ensemble as the bosonic mode. The preparation of the entangled states is deterministic. Because the cavity is always in the vacuum state during the whole evolution process, our scheme is less sensitive to the cavity decay.


2008 ◽  
Vol 22 (28) ◽  
pp. 2801-2809 ◽  
Author(s):  
N. H. ABDEL-WAHAB

The atomic system on which we focus is a single four-level atom interacting with two-mode cavity fields. We obtain the wavefunction when the atom is initially in an excited state. The result presented in this context is employed to discuss the collapses–revivals phenomenon, the photon statistics and frequency sum squeezing phenomenon. The influence of the detuning on these phenomena are investigated for two four-level atomic systems. We found that the presence of the detuning leads to an increase of the collapse time while the amount of squeezing decreases. Also, the photon statistics is affected by the existence of the detuning parameters where the anti-bunching effect appears.


Sign in / Sign up

Export Citation Format

Share Document