Design and motion planning of an autonomous climbing robot with claws

2011 ◽  
Vol 59 (11) ◽  
pp. 1008-1019 ◽  
Author(s):  
Avishai Sintov ◽  
Tomer Avramovich ◽  
Amir Shapiro
Author(s):  
Keenan Albee ◽  
Antonio Teran Espinoza ◽  
Kristina Andreyeva ◽  
Nathan Werner ◽  
Howei Chen ◽  
...  

Author(s):  
Xuefeng Zhou ◽  
Li Jiang ◽  
Yisheng Guan ◽  
Haifei Zhu ◽  
Dan Huang ◽  
...  

Purpose Applications of robotic systems in agriculture, forestry and high-altitude work will enter a new and huge stage in the near future. For these application fields, climbing robots have attracted much attention and have become one central topic in robotic research. The purpose of this paper is to propose an energy-optimal motion planning method for climbing robots that are applied in an outdoor environment. Design/methodology/approach First, a self-designed climbing robot named Climbot is briefly introduced. Then, an energy-optimal motion planning method is proposed for Climbot with simultaneous consideration of kinematic constraints and dynamic constraints. To decrease computing complexity, an acceleration continuous trajectory planner and a path planner based on spatial continuous curve are designed. Simulation and experimental results indicate that this method can search an energy-optimal path effectively. Findings Climbot can evidently reduce energy consumption when it moves along the energy-optimal path derived by the method used in this paper. Research limitations/implications Only one step climbing motion planning is considered in this method. Practical implications With the proposed motion planning method, climbing robots applied in an outdoor environment can commit more missions with limit power supply. In addition, it is also proved that this motion planning method is effective in a complicated obstacle environment with collision-free constraint. Originality/value The main contribution of this paper is that it establishes a two-planner system to solve the complex motion planning problem with kinodynamic constraints.


Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1327-1335 ◽  
Author(s):  
Nir Shvalb ◽  
Boaz Ben Moshe ◽  
Oded Medina

SUMMARYWe introduce a novel probabilistic algorithm (CPRM) for real-time motion planning in the configuration space${\EuScript C}$. Our algorithm differs from a probabilistic road map (PRM) algorithm in the motion between a pair of anchoring points (local planner) which takes place on the boundary of the obstacle subspace${\EuScript O}$. We define a varying potential fieldfon ∂${\EuScript O}$as a Morse function and follow$\vec{\nabla} f$. We then exemplify our algorithm on a redundant worm climbing robot withndegrees of freedom and compare our algorithm running results with those of the PRM.


Author(s):  
Yong Jiang ◽  
Hongguang Wang ◽  
Lijin Fang ◽  
Mingyang Zhao

2019 ◽  
Vol 9 (15) ◽  
pp. 3009 ◽  
Author(s):  
Qing Chang ◽  
Xiao Luo ◽  
Zhixia Qiao ◽  
Qian Li

A novel robot capable of performing maintenance and inspection tasks for railway bridges is proposed in this paper. Termed CMBOT (climbing manipulator robot), the robot is a combination of a five-degrees-of-freedom (5-Dof) biped climbing robot with two electromagnetic feet and a redundant manipulator with 7-Dof. This capability offers important advantages for performing maintenance and inspection tasks for railway bridges. Several fundamental issues of the CMBOT, such as robotic system development and motion planning algorithms, are addressed in this paper. A series of simulations and prototype experiments were conducted to validate the proposed robotic systems and motion planning algorithm. The results of the experiments show the reliability of the robotic systems and the efficiency of the motion planning algorithm.


Sign in / Sign up

Export Citation Format

Share Document