Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season

2012 ◽  
Vol 117 ◽  
pp. 236-248 ◽  
Author(s):  
C. Derksen ◽  
P. Toose ◽  
J. Lemmetyinen ◽  
J. Pulliainen ◽  
A. Langlois ◽  
...  
2002 ◽  
Vol 34 ◽  
pp. 1-7 ◽  
Author(s):  
C. Derksen ◽  
A. Walker ◽  
E. LeDrew ◽  
B. Goodison

AbstractThe Meteorological Service of Canada has developed a series of operational snow water equivalent (SWE) retrieval algorithms for central Canada, based on the vertically polarized difference index for the 19 and 37 GHz channels of the Special Sensor Microwave/Imager (SSM/I). Separate algorithms derive SWE for open environments, deciduous, coniferous and sparse forest cover. A final SWE value represents the area-weighted average based on the proportional land cover within each pixel. In this study, 5 day averaged (pentad) passive-microwave-derived SWE imagery for the winter season (December–February) of 1994/95 is compared to in situ data from central Canada in order to assess algorithm performance. Investigation of regions with varying proportional land cover within the four algorithm classes shows that retrieved SWE remains within ±10–20mm of surface observations, independent of fractional within-pixel land cover. Following algorithm evaluation, ten winter seasons (1988/89 through 1997/98) of pentad central North American SWE imagery are subjected to a rotated principal-component analysis (PCA). Although there are no trends in total study-area SWE, the PCA results identify the interseasonal variability in the SWE accumulation and ablation centers of action through the SSM/I time series.


1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


Sign in / Sign up

Export Citation Format

Share Document