scholarly journals Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016

2020 ◽  
Vol 250 ◽  
pp. 112046
Author(s):  
Samapriya Roy ◽  
Scott M. Robeson ◽  
Alejandra C. Ortiz ◽  
Douglas A. Edmonds
Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1054 ◽  
Author(s):  
Nina Lam ◽  
Y. Xu ◽  
Kam-biu Liu ◽  
David Dismukes ◽  
Margaret Reams ◽  
...  

A pressing question facing the Mississippi River Delta (MRD), like many deltaic communities around the world, is: Will the system be sustainable in the future given the threats of sea level rise, land loss, natural disasters, and depleting natural resources? An integrated coastal modeling framework that incorporates both the natural and human components of these communities, and their interactions with both pulse and press stressors, is needed to help improve our understanding of coastal resilience. However, studying the coastal communities using a coupled natural-human system (CNH) approach is difficult. This paper presents a CNH modeling framework to analyze coastal resilience. We first describe such a CNH modeling framework through a case study of the Lower Mississippi River Delta in coastal Louisiana, USA. Persistent land loss and associated population decrease in the study region, a result of interplays between human and natural factors, are a serious threat to the sustainability of the region. Then, the paper describes the methods and findings of three studies on how community resilience of the MRD system is measured, how land loss is modeled using an artificial neural network-cellular automata approach, and how a system dynamic modeling approach is used to simulate population change in the region. The paper concludes by highlighting lessons learned from these studies and suggesting the path forward for analysis of coupled natural-human systems.


2020 ◽  
Author(s):  
Jonathan Hird ◽  
Jeff Shelden ◽  
Tim Denton ◽  
Robert Twilley ◽  
Ioannis Georgiou ◽  
...  

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Nina S.-N. Lam ◽  
Heng Cai ◽  
Lei Zou ◽  
Kam-biu Liu

<p><strong>Abstract.</strong> In complex natural-human system modeling, often times a first step is to examine the relationships between a dependent variable and a number of independent variables at their locations. The neighborhood effect, also known as a scale effect, has seldom been considered in the analysis. Previous research has shown that scale effects affect the reliability of analysis results, and rigorous scientific studies should take an extra step to examine the scale effects for more accurate analysis and modeling. However, detecting the neighborhood effects of various variables and then incorporating them into a holistic modeling system posts a serious challenge because of the fundamental difference in properties between variables from the human component (e.g., census data) and variables from the natural component (e.g., landscape properties). Moreover, uncertainties involved in data, data scale, algorithms, and scale of analysis make the findings and the interpretations of the findings unreliable. A major issue of modeling neighborhood effects is the determination of appropriate neighborhood size, also known as the spatial context scale or the operational scale. It has been shown in the literature that neighborhood effects vary with the neighborhood size used to compute the effects. Thus, research on how to determine the neighborhood size that best captures the scale of operation of a phenomenon is very much needed so that we can have more confidence in the modeling results.</p><p>This study examines the use of variogram in detecting the appropriate neighborhood size of the variables involved in land loss modeling in the Mississippi River Delta. The goal is to find out the best combination of variables and their neighborhood sizes that best explain the variation of land loss patterns in the Deltaic region. The Mississippi River Delta has been suffering substantial land loss during the past several decades. Land loss has been a subject of intense research by many researchers from multiple disciplines, aiming at mitigating the land loss process and its potential damages. However, a majority of land loss projections were derived solely from the natural processes, such as sea level rise, regional subsidence, and reduced sediment flows. Very few studies have incorporated human-induced factors such as land fragmentation, urbanization, energy industrialization, and marine transportation. Even fewer have studied the scale effects. A study that captures and quantifies both natural and human factors as well as their neighborhood effects would help uncover the complex mechanism of land loss and provide a more accurate spatiotemporal projection of land loss patterns and probability.</p><p>The analysis procedures are as follows. (1) First, the study area is rasterized into 1-km by 1-km grids. (2) A set of natural and human variables related to land loss in the deltaic region are collected. (3) Variogram analysis of each variable is conducted to identify the spatial neighborhood size of each variable, and a neighborhood variable for each independent variable is created. (4) Elastic Net regression analysis is applied to test and select the significant variables that affect land loss. Regression results between the model with and the model without neighborhood variables are compared. Through this study, we should be able to derive a more accurate land loss model for detailed analysis and future projections.</p>


2008 ◽  
Vol 2008 (1) ◽  
pp. 887-891 ◽  
Author(s):  
S. Danchuk ◽  
C.S. Willson

ABSTRACT The demand for fossil fuels is driving the rapid expansion of the petroleum industry'S infrastructure. Louisiana'S wetlands are the most industrialized in the world. The oil industry has infiltrated every part of the Lower Mississippi River Delta (LMRD) from the fixed facilities and transport vessels traveling along inland waterways, the pipelines and canals running through the wetlands, and the offshore platforms along the Gulf of Mexico coastline. An oil spill could seriously damage the coastal wetlands that are already rapidly degrading, pollute the water supply, destroy wildlife habitat, and impact other natural economic and social resources. Additionally, proposed coastal restoration initiatives such as freshwater diversions could provide a conduit for spills to travel from the river to open wetland areas. Current inland oil fate and transport models cannot automatically be applied in the deltaic environment because they do not represent the high degree of minerals and fines in suspension, the unique characteristics of the shorelines, or the potential flow into the wetland areas. Thus, a three- dimensional oil fate and transport model was developed to investigate the behavior of oil spilled in the unique environment of the LMRD, assess the vulnerability at specific locations such as freshwater diversions from the river, and provide information for contingency and remediation plans. Simulations of the hydrodynamics of the LMRD were generated using the U.S. Army Corps of Engineers Adaptive Hydraulics (ADH) modeling code. The model simulates the physical and chemical processes affecting the fate of a surface oil spill including slick advection and spreading, the vertical transport of dissolved and emulsified parcels, evaporation, dissolution, adsorption, sedimentation, re-suspension and degradation. The model estimates the distribution of oil in the surface slick, water column, sediments and atmosphere. Almost seventy percent of the Mississippi River'S sediment load is comprised of finer materials. The model is unique in using empirical predictions to describe oil'S interactions with fine suspended material and muddy shorelines. Hypothetical spills representative of the type and location of spills commonly occurring in the region were simulated to investigate the sensitivity of the system to the unique parameters. This model was developed to take advantage of the latest advances in computational fluid dynamics and weathering algorithms, while focusing on the complex hydraulics and sediment characteristics local to the Lower Mississippi River Delta.


Sign in / Sign up

Export Citation Format

Share Document