wetland loss
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 60)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Frances O'Leary

South American wetlands are of global importance, yet limited delineation and monitoring restricts informed decision-making around the drivers of wetland loss. A growing human population and increasing demand for agricultural products has driven wetland loss and degradation in the Neotropics. Understanding of wetland dynamics and land use change can be gained through wetland monitoring. The Ñeembucú Wetlands Complex is the largest wetland in Paraguay, lying within the Paraguay-Paraná-La Plata River system. This study aims to use remotely sensed data to map land cover between 2006 and 2021, quantify wetland change over the 15-year study period and thus identify land cover types vulnerable to change in the Ñeembucú Wetlands Complex. Forest, dryland vegetation, vegetated wetland and open water were identified using Random Forest supervised classifications trained on visual inspection data and field data. Annual change of -0.34, 4.95, -1.65, 0.40 was observed for forest, dryland, vegetated wetland and open water, respectively. Wetland and forest conversion is attributed to agricultural and urban expansion. With ongoing pressures on wetlands, monitoring will be a key tool for addressing change and advising decision-making around development and conservation of valuable ecosystem goods and services in the Ñeembucú Wetlands Complex.


2022 ◽  
pp. 106-127
Author(s):  
Dipanwita Sarkar (Paria) ◽  
Nibedita Maji

Wetland-related studies documented the loss of native species diversity and promotion of the biotic homogenization due to wetland loss. Excessive withdrawals of water from wetlands for residential, agricultural, or industrial use are responsible for wetland degradation. Constructions of dams impedes water flow and replenishment of wetlands, and it also creates a hazard to aquatic living organisms. Climate change causing some wetlands to disappear under rising sea levels, while others are severely impacted by changing climatic conditions, including drought. So necessary steps such as increase wetlands and prevention of the illegal swamping of wetlands, etc. should be taken for conserving the wetland biodiversity from the threatening of unplanned urbanization, purifying the environment and mainlining the sustainable development. Though the Ramsar Convention policy exists to persevere wetlands and achieve sustainable development throughout the world, mass consciousness, greater participation of local people, use of indigenous knowledge in the management strategies are needed to protect wetlands.


2022 ◽  
pp. 280-303
Author(s):  
Pallavi Mitra ◽  
Anwesha Haldar ◽  
Priya Banerjee

Ecosystem services include conditions and processes that make up natural ecosystems and the species present therein. According to recent studies, wetland ecosystems provide the maximum service value per area by playing a significant role in regulating and purifying water supplies, controlling flood, acting as carbon-sinks, and sustaining human lives and livelihoods. Challenges like wetland loss and degradation, declining freshwater resources, and probable consequences of climate change have attracted significant scientific and public attention towards wetland conservation and restoration. Despite diligent conservation efforts, the global status of wetland security is still alarming. Long-term sustainable management and use of wetlands necessitate active public participation from all sectors. This study reviews the current status of different wetlands in India. It also provides a detailed discussion of different aspects of economic evaluation of ecosystem services, wetland restoration, and public participation for improving wetland policies and governance.


Author(s):  
Matthew C Hansen ◽  
Peter V Potapov ◽  
Amy Pickens ◽  
Alexandra Tyukavina ◽  
Andres Hernandez Serna ◽  
...  

Abstract The conversion of natural land cover into human-dominated land use systems has significant impacts on the environment. Global mapping and monitoring of human-dominated land use extent via satellites provides an empirical basis for assessing land use pressures. Here, we present a novel 2019 global land cover, land use, and ecozone map derived from Landsat satellite imagery and topographical data using derived image feature spaces and algorithms suited per theme. From the map, we estimate the spatial extent and dispersion of land use disaggregated by climate domain and ecozone, where dispersion is the mean distance of land use to all land within a subregion. We find that percent of area under land use and distance to land use follow a power law that depicts an increasingly random spatial distribution of land use as it extends across lands of comparable development potential. For highly developed climate/ecozones, such as temperate and sub-tropical terra firma vegetation on low slopes, area under land use is contiguous and remnant natural land cover have low areal extent and high fragmentation. The tropics generally have the greatest potential for land use expansion, particularly in South America. An exception is Asian humid tropical terra firma vegetated lowland, which has land use intensities comparable to that of temperate breadbaskets such as the United States’ corn belt. Wetland extent is inversely proportional to land use extent within climate domains, indicating historical wetland loss for temperate, sub-tropical, and dry tropical biomes. Results highlight the need for planning efforts to preserve natural systems and associated ecosystem services. The demonstrated methods will be implemented operationally in quantifying global land change, enabling a monitoring framework for systematic assessments of the appropriation and restoration of natural land cover.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1361
Author(s):  
Jing Xie ◽  
Yeran Sun ◽  
Xiao Liu ◽  
Zhi Ding ◽  
Ming Lu

Human-induced dramatic loss and fragmentation of wetlands need further understanding through historical backtracking analysis at a geographical landscape scale. In this study, we investigated time-series wetlands maps from 1975, 1983, 1989, 2000, 2006, and 2013 derived from Landsat images based on the object-oriented classification of wetlands across the Sanjiang Plain north of the Wandashan Mountains. The spatial and temporal changes in the wetlands that occurred at different time periods and the Euclidean distances between artificial land-use types and natural land-cover areas were evaluated for their impact. Our results showed that wetland was the dominant landscape in 1975; however, arable land became the main land coverage in 2013 owing to severe changes in agricultural development over the past decades. The closer to arable land, the greater the wetland loss during the entire investigated period; agriculture activities were the dominant driving force for the degradation of wetlands based on landscape changes; secondary was the rapid expansion in building land use (i.e., human settlement, transportation, and establishment of irrigation canals). More specifically, the rapid loss of wetland areas over 1975–2000 was mainly owing to extensive agricultural reclamation. The mitigated loss of wetland areas over 2000–2013 was because of the protection and restored implementation of wetlands under governmental policies. The wetlands of the study area suffered severe human disturbance, and our analysis may help explain the loss process of wetlands, but more effective management and administration is still needed to address the issues around the balance between agricultural production and wetland protection for further sustainable development.


2021 ◽  
pp. 1-14
Author(s):  
ÜLO VÄLI ◽  
VALERY DOMBROVSKI ◽  
GRZEGORZ MACIOROWSKI ◽  
URMAS SELLIS ◽  
ADHAM ASHTON-BUTT

Summary Understanding connectivity between migratory bird breeding and wintering grounds is essential for range-wide planning of conservation activities. We used GPS tracking to explore the migration of 28 ‘Endangered’ Greater Spotted Eagles, Clanga clanga from three remaining European breeding populations towards their wintering range, and to identify population and sex-specific patterns in selection of wintering sites. The tracked eagles wintered in three continents, 46% in Africa (mostly Eastern Sahel), 43% across southern Europe (mostly Greece) and 11% in Asia (the Middle East). Migratory connectivity was weak (rM = 0.16), and the population spread across the wintering range was large (1,917 km). The three studied populations differed in their migration strategy, with northerly, Estonian breeders all wintering in Southern Europe, and Polish and Belarusian breeders divided between Southern Europe and Africa. Migration strategy was different between Belarusian males and females, with males more likely to winter in Africa than Europe, and on average, migrating 2,500 km further south than females. Migration to Africa took longer, but was partly compensated by higher migration speeds. Greater Spotted Eagles wintered in wetland sites throughout their wintering range, with 15 of 29 birds wintering in internationally or nationally protected sites (including 12 Ramsar sites). Nearly a third of European winterers stayed in the same Greek national park, perhaps indicating a limitation of suitable sites in Europe due to wetland loss or degradation. This highlights the importance of protected wetlands to this species, but also shows their vulnerability to future wetland degradation. Only two of 14 wintering sites in Africa were under protection, showing a potential mismatch between protection of females and males in their wintering grounds.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1850
Author(s):  
Aiying Zhang ◽  
Zhixia Ying ◽  
Xunyu Hu ◽  
Mingjian Yu

Accelerating and severe wetland loss has made wetland restoration increasingly important. Current wetland restorations do not take into consideration the ecological adaptability of wetland plants at large scales, which likely affects their long-term restoration success. We explored the ecological adaptability, including plant life forms and phylogenetic diversity, of plants across 28 wetlands in China. We found that perennial herbs were more common than annual herbs, with the proportion of perennial herbs accounting for 40–50%, 45–65%, 45–70%, 50–60%, and 60–80% of species in coastal wetlands, human-made wetlands, lake wetlands, river wetlands, and marsh wetlands, respectively. A ranking of phylogenetic diversity indices (PDIs) showed an order of marsh < river < coastal < lake < human-made, meaning that human-made wetlands had the highest phylogenetic diversity and marsh wetlands had the lowest phylogenetic diversity. The nearest taxon index (NTI) was positive in 23 out of 28 wetlands, indicating that species were phylogenetically clustered in wetland habitats. Dominant species tended to be distantly related to non-dominant species, as were alien invasive species and native species. Our study indicated that annual herbs and perennial herbs were found in different proportions in different types of wetlands and that species were phylogenetically clustered in wetland habitats. To improve wetland restoration, we suggest screening for native annual herbs and perennial herbs in proportions that occur naturally and the consideration of the phylogenetic similarity to dominant native species.


2021 ◽  
Vol 13 (15) ◽  
pp. 2984
Author(s):  
Yifei Jia ◽  
Yunzhu Liu ◽  
Shengwu Jiao ◽  
Jia Guo ◽  
Cai Lu ◽  
...  

In the last 15 years, the west population of white-naped crane (Antigone vipio) decreased dramatically despite the enhanced conservation actions in both breeding and wintering areas. Recent studies highlighted the importance of protecting the integrity of movement connectivity for migratory birds. Widespread and rapid landcover changes may exceed the adaptive capacity of migrants, leading to the collapse of migratory networks. In this study, using satellite tracking data, we modeled and characterized the migration routes of the white-naped crane at three spatial levels (core area, migratory corridor, and migratory path) based on the utilization distribution for two eras (1990s and 2010s) spanning 20 years. Our analysis demonstrated that the white-naped crane shifted its migratory route, which is supported by other lines of evidences. The widespread loss of wetlands, especially within the stopover sites, might have caused this behavioral adaptation. Moreover, our analysis indicated that the long-term sustainability of the new route is untested and likely to be questionable. Therefore, directing conservation effects to the new route might be insufficient for the long-term wellbeing of this threatened crane and large-scale wetland restorations in Bohai Bay, a critical stopover site in the East Asian-Australasian flyway, are of the utmost importance to the conservation of this species.


Sign in / Sign up

Export Citation Format

Share Document