Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: Density functional theory calculations

Author(s):  
Jie Xu ◽  
Lei Wang ◽  
Guijie Liang ◽  
Zikui Bai ◽  
Luoxin Wang ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4637
Author(s):  
Peter J. Holliman ◽  
Moneer Mohsen ◽  
Arthur Connell ◽  
Christopher P. Kershaw ◽  
Diana Meza-Rojas ◽  
...  

Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10).


Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.


Sign in / Sign up

Export Citation Format

Share Document