scholarly journals Including dispersion interactions in the ONETEP program for linear-scaling density functional theory calculations

Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.

2016 ◽  
Vol 18 (47) ◽  
pp. 32007-32020 ◽  
Author(s):  
N. Y. Dzade ◽  
A. Roldan ◽  
N. H. de Leeuw

The surface and shape modulation of mackinawite (FeS) nanoparticles by amino acid cysteine adsorption is investigated using a first-principles density functional theory calculations, corrected for dispersion-interactions (DFT-D2).


2008 ◽  
Vol 8 (7) ◽  
pp. 3729-3740
Author(s):  
Dan Negrut ◽  
Mihai Anitescu ◽  
Anter El-Azab ◽  
Peter Zapol

Density functional theory can accurately predict chemical and mechanical properties of nanostructures, although at a high computational cost. A quasicontinuum-like framework is proposed to substantially increase the size of the nanostructures accessible to simulation. It takes advantage of the near periodicity of the atomic positions in some regions of nanocrystalline materials to establish an interpolation scheme for the electronic density in the system. The electronic problem embeds interpolation and coupled cross-domain optimization techniques through a process called electronic reconstruction. For the optimization of nuclei positions, computational gains result from explicit consideration of a reduced number of representative nuclei and interpolating the positions of the rest of nuclei following the quasicontinuum paradigm. Numerical tests using the Thomas-Fermi-Dirac functional demonstrate the validity of the proposed framework within the orbital-free density functional theory.


Sign in / Sign up

Export Citation Format

Share Document