Spectrally resolved luminescence lifetime detection for measuring the energy splitting of the long-lived excited states

Author(s):  
Qisheng Deng ◽  
Zece Zhu ◽  
Xuewen Shu
2021 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Weijie Hua ◽  
Hong-Xiang Nie ◽  
Mingxing Chen ◽  
Ze Chang ◽  
...  

Abstract Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.


1982 ◽  
Vol 26 (1) ◽  
pp. 116-124 ◽  
Author(s):  
R. K. Janev ◽  
C. J. Joachain ◽  
N. N. Nedeljkovic

1988 ◽  
Vol 102 ◽  
pp. 239
Author(s):  
M.S.Z. Chaghtai

Using R.D. Cowan’s computations (1979) and parametric calculations of Meinders et al (1982), old analyses are thoroughly revised and extended at Aligarh, of Zr III by Khan et al (1981), of Nb IV by Shujauddin et Chaghtai (1985), of Mo V by Tauheed at al (1985). Cabeza et al (1986) confirmed the last one largely.Extensive studies have been reported of the 1–e spectra, Zr IV (Rahimullah et al 1980; Acquista and Reader 1980), Nb V (Shujauddin et al 1982; Kagan et al 1981) and Mo VI (Edlén et al 1985). Some interacting 4p54d2levels of these spectra have been reported from our laboratory, also.Detailed spectral analyses of transitions between excited states have furnished complete energy values for J ≠ 1 levels of these spectra during 1970s and 80s. Shujauddin et al (1982) have worked out Nb VI and Tauheed et al (1984) Mo VII from our lab, while Khan et al (1981) share the work on Zr V with Reader and Acquista (1979).


Physica ◽  
1952 ◽  
Vol 18 (2) ◽  
pp. 1101-1104
Author(s):  
B FLOWERS
Keyword(s):  

1985 ◽  
Vol 46 (C7) ◽  
pp. C7-409-C7-412 ◽  
Author(s):  
C. K. Jørgensen
Keyword(s):  

1984 ◽  
Vol 45 (C4) ◽  
pp. C4-337-C4-350 ◽  
Author(s):  
K. A. Snover

Sign in / Sign up

Export Citation Format

Share Document