scholarly journals Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF

2021 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Weijie Hua ◽  
Hong-Xiang Nie ◽  
Mingxing Chen ◽  
Ze Chang ◽  
...  

Abstract Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.

2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2020 ◽  
Vol 4 (12) ◽  
pp. 3602-3615 ◽  
Author(s):  
Jonathan S. Ward ◽  
Andrew Danos ◽  
Patrycja Stachelek ◽  
Mark A. Fox ◽  
Andrei S. Batsanov ◽  
...  

This work shows that trifluoromethyl (CF3) substituents can be used to increase the rate of thermally activated delayed fluorescence (TADF) in conjugated organic molecules by tuning the excitonic character of the singlet and triplet excited states.


2015 ◽  
Vol 15 (10) ◽  
pp. 7828-7831 ◽  
Author(s):  
Dong Yuel Kwon ◽  
Geon Hyeong Lee ◽  
Young Sik Kim

Novel thermally activated delayed fluorescence (TADF) materials (ACR-OXD, 2ACR-OXD) with 9,10- dihydro-9,9-dimethylacridine (ACR) as an electron donor and oxadiazole derivative (OXD) as an electron acceptor were designed and theoretically investigated for blue OLED emitter. Using DFT and TDDFT calculations, we gained the electron distribution of HOMO and LUMO and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. In comparison with the previously reported a xanthen derivative (ACR-XTN), ACR-OXD exhibits a promising blue TADF emitter because of destabilizing the LUMO of ACR-OXD by the change of the electron accepting group and maintaining the steric hindrance between donor and acceptor moieties which lead to efficient TADF due to the small energy gap between the lowest excited singlet (S1) state and the lowest excited triplet (T1) state.


2011 ◽  
Vol 50 (19) ◽  
pp. 9329-9336 ◽  
Author(s):  
Kristoffer Haldrup ◽  
Tobias Harlang ◽  
Morten Christensen ◽  
Asmus Dohn ◽  
Tim Brandt van Driel ◽  
...  

2015 ◽  
Vol 17 (43) ◽  
pp. 28574-28585 ◽  
Author(s):  
K. Costuas ◽  
A. Garreau ◽  
A. Bulou ◽  
B. Fontaine ◽  
J. Cuny ◽  
...  

Distinct emissive species have been identified in [Mo6Bri8Bra6]2− containing systems. Strong geometrical relaxations of the triplet excited states are responsible for the huge energy shift leading to intense red-NIR emission.


2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2015 ◽  
Vol 93 (12) ◽  
pp. 1345-1353 ◽  
Author(s):  
Ahmad Ibrahim ◽  
Bandar El Fouhaili ◽  
Aurélie Chan Yong ◽  
Christian Ley ◽  
Xavier Allonas ◽  
...  

The coupling between a holographic resin, combining multiple monomers and additives, with photoinitiating systems (PIS) is not straightforward. In this paper, a classic PIS based on Safranine O (SFH+) as dye, an amine (ethyl-4-(dimethylamino)benzoate) as electron donor, and a triazine derivative (2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine) as electron acceptor for holographic recording was studied using time-resolved spectroscopic experiments. By taking into account the viscosity of the matrix, a method to evaluate the overall quantum yield of radicals released is proposed and the contribution of singlet and triplet excited states of SFH+ in the formation of radicals is evaluated. Then the corresponding photopolymerization efficiencies of the PIS, studied by real-time FTIR, are compared with holographic recording experiments: this system allows the formation of a hologram with high diffraction efficiency (0.9) in 3 s of irradiation time. It is shown that besides holographic resin formulation, the photochemistry of PIS also impacts the hologram formation.


Sign in / Sign up

Export Citation Format

Share Document