energy splitting
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 3)

Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 20-25
Author(s):  
A. V. Baran ◽  
V. V. Kudryashov

The two-dimensional circular quantum dot in a double semiconductor heterostructure is simulated by a new axially symmetric smooth potential of finite depth and width. The presence of additional potential parameters in this model allows us to describe the individual properties of different kinds of quantum dots. The influence of the Rashba and Dresselhaus spin-orbit interactions on electron states in quantum dot is investigated. The total Hamiltonian of the problem is written as a sum of unperturbed part and perturbation. First, the exact solution of the unperturbed Schrödinger equation was constructed. Each energy level of the unperturbed Hamiltonian was doubly degenerated. Further, the analytical approximate expression for energy splitting was obtained within the framework of perturbation theory, when the strengths of two spin-orbit interactions are close. The numerical results show the dependence of energy levels on potential parameters.


2022 ◽  
Author(s):  
J. Terence Blaskovits ◽  
Maria Fumanal ◽  
Sergi Vela ◽  
Yuri Cho ◽  
Clemence Corminboeuf

Singlet fission (SF) is a promising multiexciton-generating process. Its demanding energy splitting criterion - that the S1 energy must be at least twice that of T1 - has limited the...


Author(s):  
XinYe Wang ◽  
YiFan Zhang ◽  
Ze Yu ◽  
Yuan Wu ◽  
Dongdong Wang ◽  
...  

TADF-sensitizing-fluorescence (TSF) strategy suffered a disturbing energy loss causing by the T1 states of fluorescence dopant (FD) due to its low T1-state energy and forbidden of radiative transition. We supposed...


2021 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Weijie Hua ◽  
Hong-Xiang Nie ◽  
Mingxing Chen ◽  
Ze Chang ◽  
...  

Abstract Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012064
Author(s):  
Puchong Kijamnajsuk ◽  
Piyachat Wungmool ◽  
Chaiya Luengviriya

Abstract In Nuclear quadrupole resonance (NQR), the interaction of the nuclear magnetic moments of quadrupolar nuclei (spin greater than 1/2) with the electric field gradient of the surrounding molecular orbitals produces an energy splitting. Because the resonant frequency is very specific to the molecular structure, the NQR can be used to detect explosive materials very accurately and it is extremely useful for detecting modern bombs whose containers made from plastics and wood instead of metals. However, NQR signals are generally very weak so they are difficult to be detected. Recently, Red-Pitaya boards, a Field Programmable Gate Array (FPGA) on Single Board Computers, have been being utilized in many electronic applications due to their small size and low cost. Since the boards can generate and acquire radio frequency signals, they can be taken as the console of portable bomb detectors. In this work, we study an improvement of the NQR signals of an explosive, ammonium nitrate with a resonant frequency of 423.6 kHz, acquired by using a Red-Pitaya board (STEMlab 125-14). To construct the NQR signals, we simulate free induction decay (FID) signals (exponential decay of sinusoidal functions) and add real measured noises from an input port of the Red-Pitaya board. To mimic real situations, the FID amplitude is varied, frequency fluctuations and phase shifts are added. The results show that averaging of signals from repeat measurements can improve the signals in all cases. To distinguish the signals from the noises, a minimal number of measurements is required. This necessary number of repeat measurements increases with frequency fluctuations and phase shifts but decreases when the FID amplitude grows.


2021 ◽  
Vol 514 ◽  
pp. 230546
Author(s):  
Gang Tang ◽  
Vei Wang ◽  
Yajun Zhang ◽  
Philippe Ghosez ◽  
Jiawang Hong

JETP Letters ◽  
2021 ◽  
Vol 114 (7) ◽  
pp. 423-428
Author(s):  
A. A. Bykov ◽  
D. V. Nomokonov ◽  
A. V. Goran ◽  
I. S. Strygin ◽  
A. K. Bakarov ◽  
...  
Keyword(s):  

Author(s):  
Aldo Antognini ◽  
Franz Kottmann ◽  
Randolf Pohl

The energy levels of hydrogen-like atomic systems are shifted slightly by the complex structure of the nucleus, in particular by the finite size of the nucleus. These energy shifts are vastly magnified in muonic atoms and ions, i.e. the hydrogen-like systems formed by a negative muon and a nucleus. By measuring the 2S-2P energy splitting in muonic hydrogen, muonic deuterium and muonic helium, we have been able to deduce the p, d, ^33He and ^44He nuclear charge radii to an unprecedented accuracy. These radii provide benchmarks for hadron and nuclear theories, lead to precision tests of bound-state QED in regular atoms and to a better determination of the Rydberg constant.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 668
Author(s):  
Xu-Hao Yu ◽  
Xiao-Ling Qin ◽  
Xiao-Tong Dong ◽  
Jing-Wen Cao ◽  
Xu-Liang Zhu ◽  
...  

The hydrogen-disordered structure of ice, Ic, makes it difficult to analyze the vibrational normal modes in the far-infrared region (i.e., the molecular translation band). To clarify the origin of the energy-splitting of hydrogen bond vibrations in this area, a 64-molecule supercell was constructed and calculated using first-principles density functional theory. The results were in good agreement with inelastic neutron scattering experiments and our previous study of a hydrogen-ordered ice Ic model. Assisted by analytic equations, we concluded that the origin of the two hydrogen bond peaks in real ice Ic is consistent with that of hydrogen-ordered ice Ic: the peaks originate from two kinds of normal mode vibration. We categorize the four peaks in the far-infrared region recorded from inelastic neutron scattering experiments as the acoustic peak, the superposition peak, the two-hydrogen bond peak and the four-hydrogen bond peak. We conclude that the existence of two intrinsic hydrogen bond vibration modes represents a general rule among the ice family, except ice X.


Author(s):  
Meng Fan ◽  
Yan Jin ◽  
Thomas Wick

AbstractIn this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new model. In total, six models are computationally analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document