spectrally resolved
Recently Published Documents


TOTAL DOCUMENTS

977
(FIVE YEARS 169)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Philipp Arras ◽  
Philipp Frank ◽  
Philipp Haim ◽  
Jakob Knollmüller ◽  
Reimar Leike ◽  
...  

AbstractThe immediate vicinity of an active supermassive black hole—with its event horizon, photon ring, accretion disk and relativistic jets—is an appropriate place to study physics under extreme conditions, particularly general relativity and magnetohydrodynamics. Observing the dynamics of such compact astrophysical objects provides insights into their inner workings, and the recent observations of M87* by the Event Horizon Telescope1–6 using very-long-baseline interferometry techniques allows us to investigate the dynamical processes of M87* on timescales of days. Compared with most radio interferometers, very-long-baseline interferometry networks typically have fewer antennas and low signal-to-noise ratios. Furthermore, the source is variable, prohibiting integration over time to improve signal-to-noise ratio. Here, we present an imaging algorithm7,8 that copes with the data scarcity and temporal evolution, while providing an uncertainty quantification. Our algorithm views the imaging task as a Bayesian inference problem of a time-varying brightness, exploits the correlation structure in time and reconstructs (2 + 1 + 1)-dimensional time-variable and spectrally resolved images. We apply this method to the Event Horizon Telescope observations of M87*9 and validate our approach on synthetic data. The time- and frequency-resolved reconstruction of M87* confirms variable structures on the emission ring and indicates extended and time-variable emission structures outside the ring itself.


2021 ◽  
Author(s):  
Stefanie Meilinger ◽  
Anna Herman-Czezuch ◽  
Armelle Zemo Mekeng ◽  
Nicola Kimiaie ◽  
James Barry

<p>West Africa has a great potential for the application of solar energy systems, as it combines high levels of solar irradiance with a lack of energy production. Southern West Africa is a region with a very high aerosol load. Urbanization, uncontrolled fires, traffic as well as power plants and oil rigs lead to increasing anthropogenic emissions. The naturally circulating north winds bring mineral dust from the Sahel and Sahara and monsoons - sea salt and other oceanic compounds from the south. The EU-funded Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project (2014–2018), dlivered the most complete dataset of the atmosphere over the region to date. In our study, we use in-situ measured optical properties of aerosols from the airborne campaign over the Gulf of Guinea and inland, and from ground measurements in coastal cities.</p> <p>Based on an analysis of the aerosol optical properties form the DACCIWA measurement campaign, the impact of aerosol on PV power is investigated for polycrystalline silicon and amorphous silicon technology using a spectrally resolved model chain. The model considers both spectral effects on global irradiance due to different aerosol properties as well as the spectral response of different PV technologies. First, the contribution of various aerosol types (mineral dust, biomass burning and anthropogenic pollution) derived from a post-project classification is studied. Subsequently, differences between these imaginary aerosol scenarios and a real case during a biomass burning outbreak on July 13, 2016 in Benin are presented. The results show that aerosol emissions due to the biomass outbreak on the day of the case study in Cotonou lead to solar flux losses of up to 55% and photovoltaic power reduction of up to 81% for the polycrystalline cell and 78% for the amorphous cell. The relative impact of aerosols differs depending on aerosol type and concentration, being larger for low solar zenith angles than at noon. For the situation studied in Cotonou, Benin, we are able to show that the inclusion of spectral aspects leads to a significant effect when calculating the PV power. Comparing the effects of aerosols on the photovoltaic power of the two technologies, we find that the amorphous cell suffers a greater reduction in power during the morning and evening hours - when there is more diffuse irradiance - of 36% than the polycrystalline cell (27%). Conversely, in the middle of the day, we observe greater PV power reduction of the polycrystalline cell of 12% compared to the amorphous cell (8%).</p> <p><strong>Acknowledgements:</strong> Funding was provided by  the German BMWi under contract 0350009A and BMBF under contract 03SF0567A-.</p>


Author(s):  
Tamas Csizmadia ◽  
Lénárd Gulyás Oldal ◽  
Peng Ye ◽  
Szilárd Majorosi ◽  
Paris Tzallas ◽  
...  

Abstract We investigate the electron quantum path interference effects during high harmonic generation in atomic gas medium driven by ultrashort chirped laser pulses. To achieve that, we identify and vary the different experimentally relevant control parameters of such a driving laser pulse influencing the high harmonic spectra. Specifically, the impact of the pulse duration, peak intensity and instantaneous frequency is studied in a self-consistent manner based on Lewenstein formalism. Simulations involving macroscopic propagation effects are also considered. The study aims to reveal the microscopic background behind a variety of interference patterns capturing important information both about the fundamental laser field and the generation process itself. The results provide guidance towards experiments with chirp control as a tool to unravel, explain and utilize the rich and complex interplay between quantum path interferences including the tuning of the periodicity of the intensity dependent oscillation of the harmonic signal, and the curvature of spectrally resolved Maker fringes.


2021 ◽  
Vol 6 (4) ◽  
pp. 41
Author(s):  
Bharat Mishra ◽  
Angelo Pidatella ◽  
Alessio Galatà ◽  
Sandor Biri ◽  
Richard Rácz ◽  
...  

A quantitative analysis of X-ray emission from an electron cyclotron resonance (ECR) plasma was performed to probe the spatial properties of electrons having energy for effective ionisation. A series of measurements were taken by INFN-LNS and ATOMKI, capturing spatially and spectrally resolved X-ray maps as well as volumetric emissions from argon plasma. Comparing the former with model generated maps (involving space-resolved phenomenological electron energy distribution function and geometrical efficiency calculated using ray-tracing Monte Carlo (MC) routine) furnished information on structural aspects of the plasma. Similarly, fitting a model composed of bremsstrahlung and fluorescence to the volumetric X-ray spectrum provided valuable insight into the density and temperature of confined and lost electrons. The latter can be fed back to existing electron kinetics models for simulating more relevant energies, consequently improving theoretical X-ray maps and establishing the method as an excellent indirect diagnostic tool for warm electrons, required for both fundamental and applied research in ECR plasmas.


Sign in / Sign up

Export Citation Format

Share Document