scholarly journals In vitro inhibition of HIV-1 reverse transcriptase and anti-inflammatory activities of some herbal concoctions sold in the Limpopo Province

2019 ◽  
Vol 126 ◽  
pp. 65-69
Author(s):  
M.M. Matotoka ◽  
A.R. Ndhlala ◽  
P. Masoko
2001 ◽  
Vol 285 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Marie-Thérèse Château ◽  
Véronique Robert-Hebmann ◽  
Christian Devaux ◽  
Jean-Bernard Lazaro ◽  
Bruno Canard ◽  
...  

Biochemistry ◽  
1995 ◽  
Vol 34 (32) ◽  
pp. 10106-10112 ◽  
Author(s):  
Ronald S. Fletcher ◽  
Dominique Arion ◽  
Gadi Borkow ◽  
Mark A. Wainberg ◽  
Gary I. Dmitrienko ◽  
...  

2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2007 ◽  
Vol 52 (1) ◽  
pp. 329-332 ◽  
Author(s):  
Robert A. Smith ◽  
Geoffrey S. Gottlieb ◽  
Donovan J. Anderson ◽  
Crystal L. Pyrak ◽  
Bradley D. Preston

ABSTRACT Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3′-azido-3′-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.


Biochemistry ◽  
1992 ◽  
Vol 31 (4) ◽  
pp. 954-958 ◽  
Author(s):  
Jiuping Ji ◽  
Lawrence A. Loeb
Keyword(s):  

1994 ◽  
Vol 5 (4) ◽  
pp. 278-281
Author(s):  
H. Samanta ◽  
R. Rose ◽  
A. K. Patick ◽  
C. M. Bechtold ◽  
J. Trimble ◽  
...  

A virus strain resistant to R82150, a non-nucleoside reverse transcriptase (NNRT) inhibitor (tetrahydro-imidazo [4,5, 1- jk] [1,4] benzodiazepine-2(1 H)-thione), was isolated following serial passage of HIV-1 RF in CEM-SS cells. The virus is cross-resistant to another non-nucleoside reverse transcriptase inhibitor, TGG-II-23A [1,4-dimethyl-1-[5,5-dimethyl-2-oxazoionyl]-naphthalen-2-one), but remains susceptible to AZT, DDI, D4T and phosphonoformate (PFA). DNA sequencing of reverse transcriptase genes from resistant virus indicated that R82150 selects for amino acid alterations Y181C and V108I. In vitro mutagenized reverse transcriptase and recombinant HIV-1 (pNL4-3) carrying either of the mutations have been generated. Genotypic and phenotypic analyses identified V108I as an unreported R82150-associated mutation. Both reverse transcriptase and viral resistance assays indicated that the resistance conferred by the V108I mutation is 7-fold less than that conferred by Y181C.


Sign in / Sign up

Export Citation Format

Share Document