synergistic inhibition
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 111)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Vol Volume 16 ◽  
pp. 1-2
Author(s):  
Ying Liu ◽  
Ning Zhang ◽  
Hanwen Zhang ◽  
Lijuan Wang ◽  
Yi Duan ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1512
Author(s):  
Hanna Pianka ◽  
Sana Falah ◽  
Sandrine Zanna ◽  
Vladimir Bezborodov ◽  
Sergei Mikhalyonok ◽  
...  

In this work, different cationic surfactants with various aliphatic and aromatic ammonium cations were used to prepare inhibitor coatings and were characterized by different techniques such as IR spectroscopy and NMR. The inhibitor coatings were prepared by electrografting on the steel surface and their anticorrosion properties were evaluated in different media (HCl, H2SO4 and NaCl solutions). The electrochemical potentiodynamic polarization technique was used to study the inhibition efficiency of the prepared coatings. The dependence of the wetting properties of the electrografted layer and its homogeneity on the molecular structure of the prepared surfactants was studied. Particular attention was paid to the relationship between the properties of these surfactants in terms of critical micellar concentration, packing and wetting, and the anti-corrosion efficiency of their coatings. In this paper, we discuss the synergistic inhibition effect and the anticorrosion efficiency.


2021 ◽  
Author(s):  
Yanfang Wang ◽  
Kena Dan ◽  
Xiaoling Xue ◽  
Bangtao Chen ◽  
Cheng Chen

Abstract Background and aim Enterovirus 71(EV71) can cause severe hand, foot, and mouth disease (HFMD) with brain tissue involvement. Few effective anti-EV71 drugs are presently available in clinical practice. Interferon-α (IFN-α) was ineffective while Curcumin was effective in restricting EV71 replication in non-neuronal cells. Ubiquitin-proteasome-mediated degradation of interferon-alpha receptor 1 (IFNAR1) protein contributes to IFN-α resistance. Current study aimed to determine synergistic inhibition of EV71 by Curcumin and IFN-α in human neuroblastoma SH-SY5Y cells. Methods SH-SY5Y cells were infected with mock-/Curcumin-pre-incubated EV71 or transfected with plasmid containing interferon-stimulated response element (ISRE) or mRNA containing viral internal ribosomal entry site (IRES) following by post-treatment with Curcumin with or without IFN-α. Supernatant IFN-α/β was detected by ELISA. ISRE, IRSE, proteasome and deubiquitinating activity were measured by luciferase assay. EV71 RNA and viral protein or IFNAR1 were determined by qPCR and western blot, respectively. Results EV71 flailed to completely block IFN-α/β production but inhibited IFN-α signal. Curcumin only slightly inhibited EV71 proliferation without modulating virus attachment and internalization. However, Curcumin addition restored IFN-α-mediated ISRE activity thus significantly inhibiting EV71 replication. Furthermore, EV71 also reduced IFNAR1 protein with proteasome-dependence in SH-SY5Y cells, which can be reversed by Curcumin addition with the evidence that it lowered proteasome activity. Conclusion These data demonstrate that Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction via ubiquitin-proteasome disruption in SH-SY5Y cells


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1979
Author(s):  
Blessing Mabate ◽  
Chantal Désirée Daub ◽  
Samkelo Malgas ◽  
Adrienne Lesley Edkins ◽  
Brett Ivan Pletschke

Although there are chemotherapeutic efforts in place for Type 2 diabetes mellitus (T2DM), there is a need for novel strategies (including natural products) to manage T2DM. Fucoidan, a sulphated polysaccharide was extracted from Ecklonia radiata. The integrity of the fucoidan was confirmed by structural analysis techniques such as FT-IR, NMR and TGA. In addition, the fucoidan was chemically characterised and tested for cell toxicity. The fucoidan was investigated with regards to its potential to inhibit α-amylase and α-glucosidase. The fucoidan was not cytotoxic and inhibited α-glucosidase (IC50 19 µg/mL) more strongly than the standard commercial drug acarbose (IC50 332 µg/mL). However, the fucoidan lacked potency against α-amylase. On the other hand, acarbose was a more potent inhibitor of α-amylase (IC50 of 109 µg/mL) than α-glucosidase. Due to side effects associated with the use of acarbose, a combination approach using acarbose and fucoidan was investigated. The combination showed synergistic inhibition (>70%) of α-glucosidase compared to when the drugs were used alone. The medicinal implication of this synergism is that a regimen with a reduced acarbose dose may be used, thus minimising side effects to the patient, while achieving the desired therapeutic effect for managing T2DM.


2021 ◽  
Author(s):  
Yingchao Hao ◽  
Yue Gao ◽  
Yu Fan ◽  
Changchang Zhang ◽  
Mengsi Zhan ◽  
...  

Abstract Background: Chemodynamic therapy is a promising cancer treatment with specific therapeutic effect at tumor sites, since toxic hydroxyl radical (·OH) could only be generated by Fenton or Fenton-like reaction at the tumor microenvironment (TME) with low pH and high endogenous hydrogen peroxide (H2O2). However, the low concentration of catalytic metal ions, excessive glutathione (GSH) and aggressive hypoxia at tumor site seriously restrict its curative outcomes.Results: In this study, polyethylene glycol-phenylboronic acid (PEG-PBA)-modified generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers were synthesized as a targeted nanocarrier to chelate Cu(II) and then encapsulate hypoxia-sensitive drug tirapazamine (TPZ) by the formation of hydrophobic Cu(II)/TPZ complex for hypoxia-enhanced chemo/chemodynamic therapy. The formed G5.NHAc-PEG-PBA@Cu(II)/TPZ (GPPCT) with good stability could be specifically accumulated at tumors, efficiently taken up by tumor cells overexpressing sialic acid residues, and release Cu(II) ions and TPZ quickly in weakly acidic tumor sites via pH-sensitive dissociation of Cu(II)/TPZ. In vitro and in vivo experiments using murine breast cancer cells (4T1) demonstrated that the GPPCT nanoplatform could efficiently generate toxic ·OH in tumor cells while simultaneously deplete GSH, effectively kill hypoxic tumor cells by activated TPZ radicals, reduce tumor metastasis, and show no significant systemic toxicity.Conclusions: The targeted GPPCT nanoplatform may be developed for the synergistic inhibition of different tumor types by hypoxia-enhanced chemo/chemodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document