In Vitro Inhibition of Human Immunodeficiency Virus Type-1 (HIV-1) Reverse Transcriptase by Gold(III) Porphyrins

ChemBioChem ◽  
2004 ◽  
Vol 5 (9) ◽  
pp. 1293-1298 ◽  
Author(s):  
Raymond Wai-Yin Sun ◽  
Wing-Yiu Yu ◽  
Hongzhe Sun ◽  
Chi-Ming Che
1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


1997 ◽  
Vol 8 (4) ◽  
pp. 353-362 ◽  
Author(s):  
SW Baertschi ◽  
AS Cantrell ◽  
MT Kuhfeld ◽  
U Lorenz ◽  
DB Boyd ◽  
...  

Previous work by Hafkemeyer et al. (1991) [ Nucleic Acids Research19: 4059–4065] indicated that a degradation product of ceftazidime, termed HP 0.35, was active against the RNase H activity of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptase (RT) in vitro. Attempting to repeat these results, we isolated HP 0.35 from an aqueous degradation of ceftazidime and, after careful purification, we found HP 0.35 to be essentially inactive against both the polymerase and RNase H domains of HIV-1 RT (IC50 of >100 μg mL−1). During the investigation we discovered that polymeric degradation products of ceftazidime inhibited both the polymerase and, to a greater extent, the RNase H activities of HIV-1 RT in vitro (IC50 approximately 0.1 and 0.01 μg mL−1, respectively). Subjecting HP 0.35 to conditions under which it could polymerize induced inhibitory activity similar to that of the polymeric ceftazidime degradation products. It is proposed that the previously reported activity of HP 0.35 may have resulted from the presence of low levels of polymeric material either from incomplete purification or from polymerization of HP 0.35 during storage or in vitro testing.


2002 ◽  
Vol 76 (13) ◽  
pp. 6836-6840 ◽  
Author(s):  
P. Richard Harrigan ◽  
Mahboob Salim ◽  
David K. Stammers ◽  
Brian Wynhoven ◽  
Zabrina L. Brumme ◽  
...  

ABSTRACT The Y318F substitution in the 3′ region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been linked to nonnucleoside RT inhibitor (NNRTI) resistance in vitro. A systematic search of a large phenotypic-genotypic database (Virco) linked the Y318F substitution with a >10-fold decrease in NNRTI susceptibility in >85% of clinically derived isolates. There was a significant association between Y318F and use of delavirdine (P = 10−11) and nevirapine (P = 10−6) but not efavirenz (P = 0.3). Site-directed HIV-1 Y318F mutants in an HXB2 background displayed 42-fold-decreased susceptibility to delavirdine but <3-fold-decreased susceptibility to nevirapine or efavirenz. Combinations of Y318F with K103N, Y181C, or both resulted in decreased efavirenz susceptibility of 43-, 3.3-, and 84-fold, respectively, as well as >100- and >60-fold decreases in delavirdine and nevirapine susceptibility, respectively. These results indicate the importance of the Y318F substitution in HIV-1 drug resistance.


1995 ◽  
Vol 6 (2) ◽  
pp. 73-79 ◽  
Author(s):  
M. Seki ◽  
Y. Sadakata ◽  
S. Yuasa ◽  
M. Baba

MKC-442, 6-benzy 1-1-ethoxymethyl-5-isopropyIuraciI (l-EBU), is a potent and selective non-nucleoside inhibitor of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). Nevirapine, another non-nucleoside RT inhibitor (NNRTI), is associated with rapid emergence of drug-resistant variants during in vitro passages of HIV-1. The emergence of resistant viruses to MKC-442 or nevirapine was examined in vitro. MT-4 cells infected with a clinical isolate (HE) of HIV-1 were cultivated in medium containing excess concentrations of these drugs, and the drug susceptibilities of the breakthrough viruses recovered from the medium were measured. Although nevirapine lost its antiviral activity after six passages, a delay in the emergence of fully resistant viruses was observed for MKC-442. Two resistant clones for each drug were isolated and nucleotide sequences within the RT region were analysed. An amino acid substitution at position 181 (Tyr to Cys) was found, with additional substitutions at positions 103 (Lys to Arg) and 108 (Val to lle) in the MKC-442-resistant viruses. These clones showed various susceptibilities to MKC-442, and cross-resistance to other NNRTIs but not to AZT. These results suggest that the major binding site of MKC-442 on the HIV-1 RT is the tyrosine residue common to these NNRTIs, and that drug resistance to NNRTIs is dependent on both the quality and the quantity of mutations within the HIV-1 RT gene.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 495
Author(s):  
Mai Izumida ◽  
Koushirou Suga ◽  
Fumito Ishibashi ◽  
Yoshinao Kubo

In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.


2005 ◽  
Vol 79 (16) ◽  
pp. 10247-10257 ◽  
Author(s):  
Johanna Wapling ◽  
Katie L. Moore ◽  
Secondo Sonza ◽  
Johnson Mak ◽  
Gilda Tachedjian

ABSTRACT The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.


2002 ◽  
Vol 46 (11) ◽  
pp. 3437-3446 ◽  
Author(s):  
Kirsten L. White ◽  
Nicolas A. Margot ◽  
Terri Wrin ◽  
Christos J. Petropoulos ◽  
Michael D. Miller ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) resistance mutations K65R and M184V result in changes in susceptibility to several nucleoside and nucleotide RT inhibitors. K65R-containing viruses showed decreases in susceptibility to tenofovir, didanosine (ddI), abacavir, and (−)-β-d-dioxolane guanosine (DXG; the active metabolite of amdoxovir) but appeared to be fully susceptible to zidovudine and stavudine in vitro. Viruses containing the K65R and M184V mutations showed further decreases in susceptibility to ddI and abacavir but increased susceptibility to tenofovir compared to the susceptibilities of viruses with the K65R mutation. Enzymatic and viral replication analyses were undertaken to elucidate the mechanisms of altered drug susceptibilities and potential fitness defects for the K65R and K65R+M184V mutants. The relative inhibitory capacities (Ki /Km ) of the active metabolites of tenofovir, ddI, and DXG were increased for the RT containing the K65R mutation compared to that for the wild-type RT, but the relative inhibitory capacity of abacavir was only minimally increased. For the mutant viruses with the K65R and M184V mutations, the increase in tenofovir susceptibility compared to that of the mutants with K65R correlated with a decrease in the tenofovir inhibitory capacity that was mediated primarily by an increased Km of dATP. The decrease in susceptibility to ddI by mutants with the K65R and M184V mutations correlated with an increase in the inhibitory capacity mediated by an increased Ki . ATP-mediated removal of carbovir as well as small increases in the inhibitory capacity of carbovir appear to contribute to the resistance of mutants with the K65R mutation and the mutants with the K65R and M184V mutations to abacavir. Finally, both the HIV-1 K65R mutant and, more notably, the HIV-1 K65R+M184V double mutant showed reduced replication capacities and reduced RT processivities in vitro, consistent with a potential fitness defect in vivo and the low prevalence of the K65R mutation among isolates from antiretroviral agent-experienced patients.


1998 ◽  
Vol 9 (5) ◽  
pp. 423-430 ◽  
Author(s):  
M Premanathan ◽  
R Arakaki ◽  
S Ramanan ◽  
S Jinno ◽  
M Baba ◽  
...  

3-(5-Dimethylamino-1-naphthalenesulphonyl)-2-(3-pyridyl)thiazolidine (YHI-1), a synthetic analogue of D-cysteinolic acid isolated from sardines ( Sardinops melanostictus), was found to be a specific inhibitor of human immunodeficiency virus type 1 (HIV-1) replication in various cell cultures. YHI-1 inhibited HIV-1IIIB replication with a 50% effective concentration (EC50) of 3.35, 10.23 and 4.61 μM in MT-4 cells, peripheral blood mononuclear cells and MAGI-CCR5 cells, respectively. However, no antiviral activity was observed with non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 strains, such as nevirapine-resistant HIV-1HE/NEV and MKC-442-resistant HIV-1IIIB-R, or with HIV-2ROD or SIVMAC. YHI-1 failed to inhibit reverse transcriptase (RT) activity in vitro with different template–primer systems. Time-of-addition experiments, the failure to inhibit NNRTI-resistant strains and the failure to show in vitro activity against RT suggest that a metabolite of YHI-1 inside the cell acts like an NNRTI. Thus, YHI-1 seems to belong to a new class of HIV-1 inhibitor and is a good candidate for further development.


1995 ◽  
Vol 6 (2) ◽  
pp. 123-126 ◽  
Author(s):  
S. W. Cox ◽  
G. Corrigan ◽  
S. Palmer

The kinetics and inhibition by 3′-azido-3′-deoxythymidine triphosphate (AZT-TP) of reverse transcriptase (RT) from paired AZT-susceptible and -resistant primary isolates of HIV-1 taken from patients before and after therapy were examined in vitro. The resistant isolates showed mutations in the RT at positions 67, 70, 215 and 219, and also in one case at positions 41 and 215. No changes in the Vmax, the Km for dTTP or the Ki for AZT-TP of a magnitude sufficient to account for the observed development of resistance to AZT in primary isolates from these patients were found.


Sign in / Sign up

Export Citation Format

Share Document