scholarly journals Modification of Urban Temperature in Hot-Humid Climate Through Landscape Design Approach: A Review

2012 ◽  
Vol 68 ◽  
pp. 439-450 ◽  
Author(s):  
Sharifah Khalizah Syed Othman Thani ◽  
Nik Hanita Nik Mohamad ◽  
Sabrina Idilfitri
2018 ◽  
Vol 3 (8) ◽  
pp. 1-11
Author(s):  
Sharifah Khalizah Syed Othman Thani ◽  
Nik Hanita Nik Mohamad ◽  
Sabrina Idilfitri

This paper discusses a conceptual review of sustainable landscape design approach as mitigating strategies to modify urban temperature in a hot- humid climate.The amelioration of urban temperature through landscape approach can be achieved by incorporating sustainable landscape design practices via the interplay of natural vegetation in the hot-humid tropics. The findings of this paper are hoped to guide the practitioners in landscape architecture, policy makers and urban designers to incorporate sustainable landscape design approach towards improving outdoor thermal comfort; thus providing a better quality of life. Keywords: Landscape design principles; outdoor thermal comfort; urban heat island; hot-humid climate eISSN 2514-751X © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. https://doi.org/10.21834/aje-bs.v3i8.274 


2010 ◽  
pp. 115-120 ◽  
Author(s):  
D.H. Byrne ◽  
N. Anderson ◽  
M. Orwat ◽  
V. Soules

2021 ◽  
Vol 6 (16) ◽  
pp. 81-91
Author(s):  
Amalina Safiah Jasni ◽  
Sabarinah Sh Ahmad ◽  
Mariam Felani Shaari ◽  
Ricardo B Sánchez

The greenhouse is vital to protect indoor crops from the harsh hot-humid climate. This study firstly identifies design attributes of greenhouses such as dimension, shapes, orientation, and shading. Secondly, it assesses the impacts of design attributes on the greenhouse daylight performance using VeluxVisualizer. The results showed an increase in the number of skylights caused higher average daylight illuminance in the greenhouse. All the models passed the requirement for plants with small sunlight claim between 7 and 9 hours per day. This study paves the way for energy-efficient buildings with the aid of building simulation to benefit the users. Keywords: Greenhouse Design Features, Daylight Simulation, Hot and Humid Climate eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6i16.2711


2021 ◽  
Vol 8 (1) ◽  
pp. 20-35
Author(s):  
Moses Iorakaa Ayoosu ◽  
◽  
Yaik-Wah Lim ◽  
Pau Chung Leng ◽  
Olusegun Moses Idowu ◽  
...  

A base case model is a more potent dose for applied research; the passive architectural design for sustainability requires optimised experiments. However, experimenting with physical developments require construction and deconstruction until they achieved the optimal scenario. These wastes resources and time; hence, base models' development as useful instruments in the optimisation design process is desirable. Lecture theatres in universities have no specific design model whereby optimising one may not apply to the other. Therefore, this research evaluated a base model for lecture theatre regarding spatial configuration, daylighting potentials, and optimised window-to-wall ratio (WWR) for tropical daylighting. A study of ten existing lecture theatres in eight universities within eight states in Nigeria's hot-humid climate was analysed descriptively for the base model. The study employed Simulations with IES-VE software. The daylighting performance analysis adopted the daylighting rule of thumb, daylight factor, work plane illuminance (WPI), and WPI ratio. The results show that a typical lecture theatre in the study area has a dimensional configuration of 12×20 m floor plan, 6 m ceiling height, and a window wall ratio (WWR) of 13%. In the deduced base model, 4H was required for adequate daylighting against the thumb's 2.5 H daylighting rule. The research concludes a low window-wall ratio with poor daylighting quality and quantities in the base model; therefore, it implies that the daylighting was not a criterion in the designs. However, the experiment revealed a progression in daylighting performance with an increase in WWR from the base case until 30% WWR. Beyond that, there was a decline in the daylighting performance. Therefore, 30% WWR was optimal for daylighting performance in lecture theatre retrofitting within the tropical climate.


Sign in / Sign up

Export Citation Format

Share Document