scholarly journals A Dynamic Offset Model based on Stop Line Detector Information

2013 ◽  
Vol 104 ◽  
pp. 487-496
Author(s):  
Soumya Nair ◽  
Pulakesh Upadhyay ◽  
Tom V. Mathew
Keyword(s):  
2014 ◽  
Vol 8 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Johannes J. Bezuidenhout ◽  
Prakash Ranjitkar ◽  
Roger Dunn

This paper proposes a new queue prediction model based on the data that can be collected from a single loop detector positioned at the stop line of signalised intersections. A number of different model forms were explored using an enhanced NGSIM dataset. These data were filtered to represent the data that can be typically collected from a stop line detector loop. The best six models resulted in an accuracy ranging from 83% to 95% to correctly predict the state of vehicle’s discharge close to the stop line that is whether it is a queued or platooned vehicle. When combined with a logical filter to group sequential vehicles, it enables a traffic controller to estimate the most likely queue length. The proposed model will form part of a new offset optimizer algorithm currently under development.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Author(s):  
Jonathan Jacky ◽  
Margus Veanes ◽  
Colin Campbell ◽  
Wolfram Schulte
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document